Positron-production experiment using Diamond and Si crystals in the KEKB 8-GeV injector linac

> T.Suwada (tsuyoshi.suwada@kek.jp) Accelerator Laboratory, KEK

Collaboration

S.Anami, A.Enomoto, K.Furukawa, K.Kakihara, T.Kamitani, Y.Ogawa, S.Ohsawa, T.Oogoe, M.Satoh, T.Sugimura, T.Suwada and K.Yoshida Accelerator Laboratory, KEK H.Okuno. Institute of Particle and Nuclear Studies, KEK K.Umemori. Institute of Materials Structure Science, KEK R.Hamatsu, J.Hara **Physics Department, Tokyo Metropolitan University** V.Ababiy, A.P.Potylitsin, I.E.Vnukov, NPI, Tomsk Polytechnic University R.Chehab, LAL, IN2P3-CNRS, Universite de Paris-Sud

KEK Linac/ Tsuyoshi Suwada

Motivation

- High-intensity positron sources are required for future linear colliders and B-factories.
- Conventional methods using amorphous heavy metals limit to increase the intensity of primary electron beams due to the heat load on the target.
- New method using the processes of coherent bremsstrahlung (CB) and channeling radiation (CR) is one of the bright schemes for high-intensity e⁺ production.

KEK Linac/ Tsuyoshi Suwada

Introduction

- New method utilizing a crystal target was proposed by Chehab, *et al.* In 1989.
 (R. Chehab, *et al.*, PAC'89, Chicago, IL, USA, Mar. 1989, p.283)
- Yoshida, *et al.*, demonstrated a clear enhancement of the *e*+ yield in a tungsten crystal target using a 1.2-GeV electron beam.
 (K. Yoshida, *et al.*, Phys. Rev. Lett. 80, 1437, 1998)

KEK Linac/ Tsuyoshi Suwada

Introduction (cont'd)

 A series of e+ production experiments based on the new scheme has been continued, ⇒by Yoshida(Hiroshima/KEK), *et al.*,

using 1.2-GeV *e*- beam of the ES at KEK-Tana branch, 3-GeV *e*- beam at *e*+ station, and *e*- beam(<8GeV) at the end station of the KEKB injector linac.

⇒by Chehab(LAL), *et al.*,

using 5-40 GeV secondary e- beam at CERN-SPS.

KEK Linac/ Tsuyoshi Suwada

Introduction (cont'd)

- Theoretically unified treatment taking into account both processes of CR and CB has not yet been established on the simulation.
- More experimental data are expected to clearly understand the elementary physical processes of the CR and CB, and they are also required to develop the design of a realtype positron source.

KEK Linac/ Tsuyoshi Suwada

Historical View of the KEK Experiments

Month/Year				
May/1997	KEK Tanashi, ES	1.2	Crystal W (W _c) [1.2]	
Apr, Jun/1998	KEK Tsukuba,	3	W _c [1.7]	
	Electron Linac		+ Amor. W (W_a) [7]	
Nov/1998	KEK Tanashi, ES	0.6, 0.8, 1	W _c [0.4, 1.2, 2.2],	
			GaAs [0.36], Diamond[1.1]	
Sep, Oct/2000	KEK Tsukuba,	8	W _c [2.2],	
	Electron Linac		W _c [2.2]+W _a [5, 10, 15]	
Apr/2001	KEK Tsukuba,	8	W _c [2.2], W _c [9]	
	Electron Linac		$W_{c} [9]+W_{a} [2, 4]$	
Sep/2001	KEK Tsukuba,	8	W_{c} [2.2], W_{c} [5.3], W_{c} [9]	
	Electron Linac		Combined targets(W _c +W _a)	
Jan/2002	KEK Tsukuba,	4	W_{c} [2.2], W_{c} [5.3], W_{c} [9]	
	Electron Linac		Combined targets($W_c + W_a$)	
Aug-Sep/2002	KEK Tsukuba,	8	Si <110> 2.6, 30, 48	
	Electron Linac		Diamond <110> 4.57	
			Combined (Si/Dia.+W _a)	
Dec/2002	KEK Tsukuba,	8	Si <110> 10, 30, 48	
	Electron Linac		Diamond <110> 4.57	
			Combined (Si/Dia.+W _a)	
L Droduction Mini Workshop @KEK				

KEK Linac/ Tsuyoshi Suwada

Channeling Radiation & Coherent Bremsstrahlung Processes

Physical processes for the channeling radiation and coherent bremsstrahlung

New Positron Production Schemes

17/Jan,2003

Tsuyoshi Suwada

Experimental Setup

KEK Linac/ Tsuyoshi Suwada

Linac Beam Line at the 3rd switch yard

KEK Linac/ Tsuyoshi Suwada

Experimental Setup (cont'd):Photo picture of a crystal target on a goniometer

KEK Linac/ Tsuyoshi Suwada

Experimental Setup (cont'd):Photo picture of crystal & amorphous targets

KEK Linac/ Tsuyoshi Suwada

Experimental Setup (cont'd):Positron spectrometer

KEK Linac/ Tsuyoshi Suwada

Acceptance of the Positron Spectrometer

		- A Ibo accontanco (AD
Pe+	Acceptance ($\Delta P \Delta \Omega$)	ΛQ) was obtained by
(MeV/c)	$(10^{-4} \text{ x (MeV/c)} \bullet \text{sr})$	using the simulation
5	1.08 ± 0.03	code (GEANT3).
10	2.47 ± 0.07	Typical acceptance
15	3.80 ± 0.1	Momentum:
20	4.81 ± 0.12	∆P/P=2.4% (FWHM) <mark>&</mark>
		Geometrical:
		$\Delta \Omega$ =1msr
		at Pe+=20MeV/c.

KEK Linac/ Tsuyoshi Suwada

Experimental Condition

Electron Beam:

- Beam Energy = 8 GeV
- Angular Spread ~22 µrad (H), ~44 µrad (V)
- Transverse Beam Size ~0.8mm (FWHM) in diameter
- Beam Charge = 0.1 nC/bunch
- Bunch Length (Single Bunch) ~9 ps (FWHM)
- Beam Repetition = 25Hz

Angular Spread of the Electron Beam at the Positron Target

• $\Phi \sim 55 \ \mu rad < \Phi c$ (due to multiple scattering by a beam-extraction vacuum window(30 μ m-thick SUS))

Critical Angle for the Channeling Condition at the Positron Target Linhard Crytical Angles

- Φc ~ 170µrad @8 GeV for Silicon Crystal
- Φc ~ 130µrad @8 GeV for Diamond Crystal

KEK Linac/ Tsuyoshi Suwada

Experimental Condition (cont.)

Positron-Production Targets:

- Crystal Silicon Target : 2.55, 9.9, 29.9 and 48.15mm thickness
- Crystal Diamond Target : 4.57mm thickness
- Amorphous Tungsten Target: 3-18mm (3mm step) thickness (for the purpose of hybrid targets and for the *e*⁺ production yield calibration)

Detected Momentum Range:

• 10 MeV/c $\leq Pe^+ \leq$ 30 MeV/c

Positron Detectors

Lead-Glass Calorimeter: Measurement of total energy of e+
Acrylic Cherenkov Counter: Measurement of number of e+
Beam Monitors

•*Wall-current monitor* for the electron beam-charge measurement •*Screen monitor* for the beam-profile measurement

KEK Linac/ Tsuyoshi Suwada

Experimental Results: 2-Dimensional Axis Scan for 5mm-thick Diamond Crystal at Ee-=8 GeV (Pe+=20MeV/c)

KEK Linac/ Tsuyoshi Suwada

Experimental Results: 2-Dimensional Axis Scan for 30-mm thick Si Crystal at Ee==8 GeV (Pe+=20MeV/c)

KEK Linac/ Tsuyoshi Suwada

Experimental Results: Rocking Curves (Axis <110>) for 5mm-thick Diamond and 30mm-thick Si Crystals at Ee-=8 GeV (Pe+=20MeV/c)

KEK Linac/ Tsuyoshi Suwada

Experimental Results: Variations in the width of the rocking-curve peak for Ee-=8 GeV (Pe+=20MeV/c)

KEK Linac/ Tsuyoshi Suwada

Experimental Results: Variations in the enhancement $(N_{e+@peak}/N_{e+@base})$ of the e+ yield at Ee-=8 GeV (Pe+=20MeV/c)

Experimental Results: Positron momentum dependence for the e+ yield enhancement at Ee-=8 GeV

Tsuyoshi Suwada

17/Jan,2003

Experimental Results:

Variations of the e+ production yield for the amorphous tungstens and off-axis crystal targets at Ee-=8 GeV (Pe+=20MeV/c)

Experimental Results: variations of the e+ production yield for the onaxis crystal targets at Ee-=8 GeV (Pe+=20MeV/c)

Normalized e⁺ Yield from On-Axis Combined Target

Experimental Results: Variations of the e+ production enhancement for the crystal targets at Ee-=8 GeV (Pe+=20MeV/c)

Experimental Results: Crystal effects for the Diamond and Si crystal targets at Ee==8 GeV (Pe+=20MeV/c)

Crystal Effect

Experimental Results: Multiple Scattering Effect of the Vacuum Windows Using the Diamond crystal at Ee==8 GeV (Pe+=20MeV/c) Multiple Scattering Effect

KEK Linac/ Tsuyoshi Suwada

17/Jan,2003

Conclusions

▲Positron production experiment using Diamond and Silicon crystal targets has been successfully performed at the KEKB 8-GeV electron linac.

▲*Rocking curves*

- ⇒ The obtained widths of the rocking-curve peak is larger than the critical angle,
- \Rightarrow and broaden with the thickness of the crystal target.
- ⇒ These broad width of the rocking curves indicate that coherent bremsstrahlung is the predominant process over the channeling radiation process in this energy region.
- ⇒ The increase of the peak width depending on the target thickness may come from the multiple scattering of the incident electrons in the target.

KEK Linac/ Tsuyoshi Suwada

Conclusions (cont'd)

▲Enhancement (En) and momentum dependence of the e⁺ yield

- for the crystal target alone from 8-GeV channeling electrons at a e⁺ momentum of 20MeV/c
- \Rightarrow *En*= 9.3 ±0.5 (9.9-mmSi), 9.9 ±0.5 (29.9-mmSi),
- \Rightarrow *En*= 6.4 ±0.3 (48.15-mmSi), 16 ±0.8 (4.57-mmDiamond)
- The enhancement is much reduced with an increase of the total target thickness.
- No crystal effect enhances the e+ yield at the target thickness larger than ~4.2 X_0 in total.
- •The e+ yields with Pe+=20MeV/c at Ee-=8GeV were almost the same level as the maximum e+ yield obtained for the amorphous tungsten target.
- New scheme using the combined crystal target indicates that heat load in the amorphous tungsten part of the target could be considerably reduced due to a small amount of the energy loss in total.
- \Rightarrow It is of great benefit to apply such a crystal target to a high-intensity e+ source required for high-luminosity e+e- colliders and B-fatories.

KEK Linac/ Tsuyoshi Suwada