21st ICFA Beam Dynamics Workshop onLaser - Beam Interaction12.Jun,2001

Positron Production from a Tungsten Single Crystal at the KEK 8-GeV Electron Linac

Presenter: K.Sasahara

Graduate School of Science, Department of Physics, Tokyo Metropolitan University

Research Organization

21st ICFA Beam Dynamics Workshop on

Laser-Beam Interaction

K.Sasahara, R.Hamatsu, S.Anami^A A.Enomoto^A, K.Furukawa^A, K.Kakihara^A, T.Kamitani^A, Y.Ogawa^A, S. Ohsawa^A, T.Oogoe^A, T.Suwada^A, H.Okuno^B, K.Umemori^C, T.Fujita^C, K.Yoshida^C V.Ababiy^D, A.P.Potylitsin^D, I.E.Vnukov^D

Graduate School of Sicence, Department of Physics, Tokyo Metropolitan University, Tokyo, Japan

Accelerator Laboratory, KEK^A, Tokyo, Japan

Institute of Particle and Nuclear Studies, KEK^B, Tokyo, Japan

Hiroshima Synchrotron Radiation Center, Hiroshima University^C, Japan

Nuclear Physics Institute, Tomsk Polytechnic University^D, Tomsk, Russia

1. Purpose of the Experiment

Study of the possibility of using a tungsten (W) single crystal as a target for positron production in a linear accelerator

- Increase of the positron production efficiency
- Optimum target thickness, etc...

⇒ <u>Application to KEKB and future Linear Colliders</u>

2. Principle

Coherent Bremsstrahlung and Channeling Radiation

3. The Method Using a Single Crystal

- (a) Radiation and pair creation in one crystal
- (b) Radiation in the front crystal and pair creation in the amorphous converter

4. Experiment at the KEK 8-GeV Linac

(1) Experimental Method and Apparatus

Front View

Rear View

(Fig.4.)

(2) Condition

Incident Electron Beam

Energy:	8 GeV
Intensity:	0.2 nC/bunch (~10 ⁹ e-)
Repetition:	2 Hz
Bunch Width:	10 ps
Beam Size at Target:	$1.5 \text{ mm } \phi$
Beam Divergence:	15 μ rad (Vertical)
	72 μ rad (Horizontal)

Target for Positron Production

Tungsten Single Crystal:<111>axis2.2 mm (Mosicity:1.5mrad) & 9 mm (Mosicity:0.5mrad)Tungsten Amorphous: 0~18 mm

Positron Spectrometer

Pe+ [MeV/c]	Acceptance [MeV/c-Steradian]
10	2.47×10^{-4}
15	3.80×10^{-4}
20	4.81×10^{-4}

Positron Detector

Acrylic Cherenkov Counter, Lead-Glass Calorimeter

5. Experimental Results

(1) Rocking Curve for Pe₊=20MeV/c

Cf. Lindhart Angle: ~0.4 mrad Multiple Scattering Angle: ~1.3 mrad@2.2mm, ~2.8 mrad@9mm

(2) Enhancement

Def. The ratio between yields from the oriented (On-Axis) and disoriented (Off-Axis) W crystal axis <111>.

(3) Target Thickness Dependence for Pe+=20MeV/c

(4) Comparison with the past experiment

Month Enhance Place Energy Target Accelerator Year [GeV] [mm] ment **KEK** Tanashi Mar Wc(1.2) 3 1.2 1997 Branch, ES KEK Apr, Jun Wc(1.7)+Wa(7)3 1.4 1998 Linac Nov **KEK** Tanashi Wc(0.4, 1.2, 2.2) $2 \sim 2.5$ 1998 Branch, ES 0.6, 0.8, 1 GaAs(0.36) Diamond(1.1) Sep,Oct 5.1 KEK Wc(2.2)8 2000 Wc(2.2)+Wa(5,10,15)Linac $1.2 \sim 1.9$ Wc(2.2) 5.1 KEK Apr 8 Wc(9) 1.7 2001 Linac $1.2 \sim 1.3$ Wc(9)+Wa(2,4)

(Pe+=20MeV/c)

(Table.1.)

6. Summary

1. The enhancement of the positron yields for Pe+=20MeV/c,

Thin W crystal (2.2mm) - 5.1 times Thick W crystal (9mm) - 1.7 times

has been observed in the 8GeV electron beam. (see Fig.5)

2. As the momentum becomes low, the enhancement is getting larger. (see Fig.5,6)

⇒ Advantage for the capture efficiency of a Linac positron generator ('.'2)

3. The enhancement decreases as the target thickness increases. (see Fig.6, Table.1)

21st ICFA Beam Dynamics Workshop on

Laser-Beam Interaction

4. The enhancement increases <u>as the incident electron</u> <u>energy increases</u>. (see Table.1)

5. <u>9 mm-thick W crystal is comparable to 14 mm-thick W</u> <u>amorphous</u>, which is the optimum thickness for the positron production at the KEKB injector Linac. (see Fig.7)

⇒ When the energy of an incident electron beam becomes high , it is expected that the positron yield increases. (`.`1,4,5)