
[image: image8]
Draft
[image: image2.emf]
Draft
[image: image3.emf]

EDM to XML Converter
Design Document
	Y IF ""="Y" "Revision" "Revizija"
Revision
:
	1.0

	Y IF ""="Y" "Status" "Stanje"
Status
:
	Released

	Y IF ""="Y" "Repository" "Repozitorij"
Repository
:
	cosysvn

	Y IF ""="Y" "Project" "Projekt"
Project
:
	ACC-SNS-EDM2XML

	Y IF ""="Y" "Folder" "Mapa"
Folder
:
	.

	Y IF ""="Y" "Document ID" "Oznaka dokumenta"
Document ID
:
	CSL-DES-09-50575

	Y IF ""="Y" "File" "Datoteka"
File
:
	DES-EDM_to_XML_Converter.doc

	Y IF ""="Y" "Owner" "Lastnik"
Owner
:
	pmedvescek

	Y IF ""="Y" "Last modification" "Zadnja sprememba"
Last modification
:
	December 18, 2009

	Y IF ""="Y" "Created" "Ustvarjen"
Created
:
	December 18, 2009

[image: image2.emf]

Y IF ""="Y" "Document History" "Zgodovina dokumenta"
Document History
	Y IF ""="Y" "Revision" "Revizija"
Revision

	Y IF ""="Y" "Date" "Datum"
Date

	Y IF ""="Y" "Changed/
reviewed" "Spremenjen/
pregledan"
Changed/
reviewed

	Y IF ""="Y" "Section(s)" "Poglavja"
Section(s)

	Y IF ""="Y" "Modification" "Spremembe"
Modification

	0.1
	2009-08-18
	ssah
	All
	Created.

	0.2
	2009-09-22
	ssah
	All
	Split to overview and detailed part.

	0.3
	2009-11-17
	mbokal
	All
	Synchronization with actual code.

	1.0
	2009-12-18
	ssah
	All
	Release.

Y IF ""="Y" "Confidentiality" "Zaupnost"
Confidentiality
Y IF ""="Y" "N IF = "Y" "This document is classified as a confidential document. As such, it or parts thereof must not be made accessible to anyone not listed in the Audience section, neither in electronic nor in any other form." "This document is classified as a public document. As such, it or parts thereof are openly accessible to anyone listed in the Audience section, either in electronic or in any other form."
This document is classified as a public document. As such, it or parts thereof are openly accessible to anyone listed in the Audience section, either in electronic or in any other form.
" "N IF = "Y" " Dokument je zaupne narave. Kot tak ne sme biti ne v elektronski ne v katerikoli drugi obliki niti v celoti niti delno dostopen nikomur, ki ni imenovan v poglavju Uporabniki." "Dokument je javne narave. Kot tak je lahko v elektronski ali v katerikoli drugi obliki v celoti ali delno dostopen vsakomur, ki je imenovan v poglavju Uporabniki."
Dokument je javne narave. Kot tak je lahko v elektronski ali v katerikoli drugi obliki v celoti ali delno dostopen vsakomur, ki je imenovan v poglavju Uporabniki.
"
This document is classified as a public document. As such, it or parts thereof are openly accessible to anyone listed in the Audience section, either in electronic or in any other form.

Y IF ""="Y" "Scope" "Namen"
Scope
This document is a requirements and design document for EDM to XML Converter.
Y IF ="Y" "Audience" "Uporabniki"
Audience
The document is targeted at SNS developers of the new display renderer and the Cosylab developers implementing the EDM to XML converter plug-in.
Glossary of Terms
EDM – Extensible Display Manager, an interactive GUI builder and execution engine for EPICS
EDL – File extension of EDM display file

OPI – File extension for XML-type format used for the new operator interface builder and display renderer under development at SNS
Y IF ="Y" "Table of Contents" "Kazalo vsebine"
Table of Contents
41. Using edm2xml converter

41.1. Running from command line

41.2. Using as Eclipse Library

62. Adding Support for new Widgets

83. Special Cases

83.1. Optional Attribute Support

83.2. Adding Support for new Attributes

93.2.1. Model package

103.2.2. Writer Package

113.3. Handling non 1 to 1 EDM Entity to OPI Widget Mapping

113.3.1. 1 to N Entity to Widget mapping

113.3.2. N to 1 Entity to Widget mapping

124. Updating Plugin and Javadoc

124.1. Rebuilding

124.2. Updating Javadoc

135. Design Overview

135.1. Conversion

145.2. Conversion Example

165.3. Packaging

165.4. Test Plan

165.4.1. Test Driven Development

165.4.2. Final Product Testing

175.5. Documentation Plan

186. Code Design

186.1. Packages

186.2. Application Interface

186.3. Parser

186.3.1. File Formats

196.3.2. Class Hierarchy

196.3.3. Class Descriptions

206.4. Model

206.4.1. Class Hierarchy

206.4.2. Class Descriptions

246.5. Writer

246.5.1. Class Hierarchy

246.5.2. Class Descriptions

277. References

1. Using edm2xml converter

EDM to XML converter can be used in two ways: as command-line application or as Java library.

For proper conversion, EdmColorsList file (colors.list) must be specified in system property “edm2xml.colorsFile”. If this system property is not specified, converter assumes that colors.list file exists in directory, specified by EDMFILES operating system environmental variable. If this environmental variable is not specified, converter looks for colors file in working directory: “./colors.list” .

1.1. Running from command line

The converter tool is packaged in JAR file. It is written in Java and runs on JVM1.5. From command line it is launched with the following syntax:

java –jar edm2xml.jar [-help] [-r] [-c] <edm_file.edl> [<new_display_file.opi>]

The last argument <new_display_file.opi> is optional. If not specified, converter automatically creates file name from <edm_file.edl> by appending or changing extension to “.opi”.

Runtime options:

[-r]
Disables robust EDL file parsing. Parsing will stop at any kind of exception.

[-help]
Displays quick help.

[-c]
Writes color definition file.
When using -c option, color definitions are stored in color.def file placed in the same directory as OPI_FILE. To specify alternative path and filename, set edm2xml.colorsOutput java property.
1.2. Using as Eclipse Library

User can also take advantage of EdmToXml converter’s classes and whole functionality by using it as classic Java library.

To do so, edm2xml.jar file must be added to Eclipse project Java Build Path. It is achieved in following steps:

1. In Package Explorer, select your Java project.

2. Open project properties: Menu Project > Properties.

3. In list on the left, select “Java Build Path” property.

4. Select “Libraries” tab in right part of the dialog.

5. Click “Add External JARs” button.

6. Search for edm2xml.jar file and open it, then click OK.

Now all edm2xml converter classes can be included by using import syntax:

import org.csstudio.opibuilder.converter.*;
2. Adding Support for new Widgets

To add support for new widgets, an EdmConverter build environment is required. You can get it by checking out the corresponding Eclipse project from a CVS hosted by DESY.
To create a support for a new widget type, two java classes need to be included, one that defines the java model, and another that handles the conversion to XML format.

An example for the java model definition for a rectangle widget can be seen in Figure 1. Definition file should be put in model package. The definition consists of a single constructor, a set of annotated attributes and their getter methods.

The conversion to XML format for the rectangle widget is shown in Figure 2 and should be put in writer package. It consists of a single constructor that generates the document model fragment that will be stored as an XML file. The constrictor is supplied the conversion context object that can be used to access the document model, current generated element and widget position information.
public class Edm_activeRectangleClass extends EdmWidget {

@EdmAttributeAn private int major;

@EdmAttributeAn private int minor;

@EdmAttributeAn private int release;

@EdmAttributeAn private int x;

@EdmAttributeAn private int y;

@EdmAttributeAn private int w;

@EdmAttributeAn private int h;

@EdmAttributeAn private EdmColor lineColor;

@EdmAttributeAn private EdmColor fillColor;

public Edm_activeRectangleClass(EdmEntity genericEntity) {

super(genericEntity);

}

...

public int getX() {

return x;

}

...

public EdmColor getBgColor() {

return bgColor;

}

...

}

Figure 1: The Java model definition for the EDM Rectangle widget

public class Opi_activeRectangleClass extends OpiWidget {

...

private static final String typeId = "Rectangle";

private static final String name = "EDM Rectangle";

private static final String version = "1.0";

public Opi_activeRectangleClass(

 Context con,

 Edm_activeRectangleClass rectangle)

{

super(con);

setTypeId(typeId);

context.getElement().setAttribute("version", version);

new OpiString(context, "name", name);

// Absolute to relative position mapping.

new OpiInt(context, "x", rectangle.getX() - context.getX());

new OpiInt(context, "y", rectangle.getY() - context.getY());

new OpiInt(context, "width", rectangle.getW());

new OpiInt(context, "height", rectangle.getH());

new OpiColor(doc, element, "border_color",

 rectangle.getLineColor());

new OpiColor(doc, element, "color_background",

 rectangle.getFillColor());

}
};

Figure 2: The XML conversion class for Rectangle widget

3. Special Cases

3.1. Optional Attribute Support

When some widget contains an attribute, that is not always present in every widget, it should be annotated with @EdmOptionalAn. This prevents throwing an exception when parser specializes the general interface and finds out that some attribute is missing.

For example, let’s consider our Rectangle from Figure 1 from previous chapter. If we know, that attribute fillColor is not present in every Rectangle that is going to be parsed we should define the attribute by adding @EdmOptionalAn annotation:

@EdmAttributeAn @EdmOptionalAn private EdmColor fillColor;

In OPI output class, these optional EdmAttributes must be checked whether they have been initialized (for example, specified in current Rectangle that is being outputted) using EdmAttribute.isInitialized() method. Only if optional attribute is initialized it should be written to OPI file:

if (rectangle.getFillColor().isInitialized()) {
 new OpiColor(doc, element, "color_background",

 rectangle.getFillColor());

}

Otherwise, there may be exception thrown or meaningless data might be written out.

When using primitive Java types for Edm Attributes, the initialization check can be performed by accessing the generic attribute object.

@EdmAttributeAn @EdmOptionalAn private double visMax;

if (rectangle.getAttribute("visMax").isInitialized()) {

 new OpiDouble (doc, element, "visibility_max",

 rectangle.getVisMax());

}
3.2. Adding Support for new Attributes

New attribute types can be defined in similar fashion as widgets, for instance to handle compound properties with known structure. Each EdmAttribute value represents one compound value.

For example, let’s say that we have an EdmAttribute that describes some special font:

specialFontName {

 size 10.0

 bold

 italic

 color index 10

}

And the OPI output should look like:

<specialFontName>

 <specialFont size=”size” bold=”true” italic=”true” color=”name_of_color_index_10”>

</specialFontName>

Let’s give our new attribute the name EdmSpecialFont.

To support it, we need to do two things:

1. add support class in model package

2. add support class in writer package.

3.2.1. Model package

In model package, we implement the special parsing interface for our new attribute. We need a constructor that will specify how generic data is parsed into specific data, and getter methods.

The skeleton of our new EdmAttribute type will be as follows:

public class EdmSpecialFont extends EdmAttribute {

private double size;

private boolean bold;

private boolean italic;

private EdmColor color;

public EdmSpecialFont(EdmAttribute copy, boolean required) throws EdmException {

super(copy);

setRequired(required);

if (copy == null || getValueCount() == 0) {

if (isRequired())

throw new EdmException(EdmException.REQUIRED_ATTRIBUTE_MISSING,

"Trying to initialize a required attribute from null object.");

else {

log.warn("Missing optional property.");

return;

}

}

/** SPECIFIC PARSING FOLLOWS **/

}

public double getSize() {

return size;

}

public boolean isBold() {

return bold;

}

public EdmColor color() {

return color;

}

}

Figure 3: Skeleton of our new EdmAttribute class

The specified starting code in constructor is always the same for every specific EdmAttribute. It is needed for @EdmOptionalAn annotating to work.

Following this code, we must support specific parsing for EdmAttribute that sets each attribute’s internal property. In our case, parsing should look like:

if (copy != null) {

 try {

 isBold = false;

 isItalic = false;

 for (int i = 0; i < getValueCount(); i++) {

 String val = copy.getValue(i);

 if (val.beginsWith("size ")

 size = Double.parseDouble(val.replaceFirst("size "));

 if (val.beginsWith("bold")

 bold = true;

 if (val.beginsWith("italic")

 italic = true;

 if (val.beginsWith("color ")

 color = new EdmColor(val.replaceFirst("color ");

 }

 setInitialized(true);

 }

catch (Exception e) {

 throw new EdmException(EdmException.SPECIFIC_PARSING_ERROR,

"Invalid special font format.");

}

}

Figure 4: Implementation for specific parsing in constructor

3.2.2. Writer Package

In writer package, we create a class that handles OPI outputting. For example:

public class OpiColor extends OpiAttribute {

public OpiColor(Document doc, Element parent, String name, EdmSpecialFont f) {

super(doc, parent, name);

Element attElement = doc.createElement("specialFont");

element.appendChild(attElement);

String size = String.valueOf(f.getSize());

String bold = String.valueOf(f.isBold());

String italic = String.valueOf(f.isItalic());

attElement.setAttribute(“size”, size);

attElement.setAttribute(“bold”, bold);

attElement.setAttribute(“italic”, italic);

attElement.setAttribute(“color”, f.getColor().getName());

}

}

Figure 5: Implementation for specific parsing in constructor

3.3. Handling non 1 to 1 EDM Entity to OPI Widget Mapping

The design of writer part is made to handle one to one EDM entity to OPI widget. However, different mappings are also possible if required.

3.3.1. 1 to N Entity to Widget mapping

When mapping a single EDM entity Edm_<name> to several different OPI widgets, an “if” clause should be included in the Opi_<name> class implementation and the appropriate widget typeId and the mapping specified for each case. Common OPI XML structure can be handled at the base level to avoid duplication.

3.3.2. N to 1 Entity to Widget mapping

When mapping multiple EDM entity Edm_<name1,2,...> to one OPI widget, normally the output mapping must be specified independently in each Opi_<name1,2,...> class implementation.

Alternatively, if EDM entities are similar, a base class Edm_<basename> defining common attributes can be included in the model. Similarly an Opi_<basename> class can be included that generates the common OPI widget structure.

Yet another possibility is to introduce only an Opi_<basename>, and use generic attributes, however this can be dangerous because it is less type safe.

4. Updating Plugin and Javadoc
To rebuild edm2xml.jar package, an Eclipse Fat-Jar plug-in [1] is required.
4.1. Rebuilding

Plug-in is easily updated by selecting whole edm2xml converter package, right clicking on it and choosing “Build Fat-Jar” command. In the following dialog, just press “Finish” to complete the process.

4.2. Updating Javadoc

Javadoc can be updated in the same manner. Select edm2xml package, right-click and choose “Export” command. In the following dialog, search for “Javadoc” option in list under folder “Java”. Select the dialog options for required visibility and destination (doc/javadoc), and then click Finish to generate the Javadoc.

5. Design Overview
5.1. Conversion

The conversion process is illustrated in Figure 6. The in-memory data model is divided into a generic and specific part. The generic part consists of classes representing generic widgets and generic properties, while the specific part extends those classes with information on the types of the widgets and types of properties.

The parser stores the file contents in the generic part of the data model; it parses only generic file structure, and ignores widget and property types.

After the file parsing has completed, the specialization process checks the widget and property types and replaces the generic objects with specific objects. This process is separated from the parsing so that the type definitions of specific widgets are optional. Non-defined widgets and widgets with illegal types stay generic.

After the specific data model has been generated, the writer uses that model to write out a representation of the widgets in the XML format.

[image: image1.png]filename.edl

Validation - attribute
existence and types

filename.opi

Figure 6: Data path of the conversion process

5.2. Conversion Example
Figure 7 shows and example of the EDL file. The parser reads the file and produces the generic data model seen in Figure 8. The model consists of generic entities and attributes, where an entity can contain zero, one or many sub-entities and attributes.

After the specialization process, the data model is transformed into the one shown in Figure 9; the generic objects are replaced with instances of extending classes, describing the specific widgets and their attributes. At this point, the external file references are handled if specified, such as color references. The unrecognized objects are left as generic.

The output OPI file is shown in Figure 10.

4 0 1

beginScreenProperties

major 4

minor 0

release 1

x 1704

y 1325

w 1090

h 960

font "helvetica-bold-r-14.0"
fgColor index 14
showGrid
...

endScreenProperties

(Rectangle)

object activeRectangleClass

beginObjectProperties

...

x 330

y 770

w 250

h 180

fillColor index 49

...

endObjectProperties

(Group)

object activeGroupClass

beginObjectProperties

...

beginGroup

...

endGroup

...

endObjectProperties

Figure 7: Example EDLfile with Rectangle and Group definitions

EdmModel

EdmEnitity colors.list

...
EdmEntitiy example.edl

EdmAttribute major: 4

EdmAttribute minor: 0

...

EdmAttribute font: helvetica-bold-r-14.0

EdmAttribute fgColor: index 14

EdmAttribute showGrid

...

EdmEntity activeRectangleClass

...

EdmAttribute x: 4

EdmAttribute y: 4

EdmAttribute fillColor: index 49

...

EdmEntity activeGroupClass

EdmAttribute ...

...

EdmEntity ...

...

Figure 8: A generic in-memory model of the EDL file produced by the parser

EdmModel

EdmColorsList colors.list

...

EdmDisplayFile example.edl

int major: 4

int minor: 0

...

EdmFont font: name: helvetica bold: true italic: false size: 14.0

EdmColor fgColor: name: black-14 red: 0 green: 0 blue: 0

EdmBoolean showGrid: true

...

Edm_activeRectangleClass activeRectangleClass

...

int x: 330

int y: 770

EdmColor fillColor: name:"wid-bg-neu" red:0 green:0 blue:255

...

Edm_activeGroupClass activeGroupClass

int ...

...

EdmEntity ...

...

Figure 9: A specific in-memory model produced from generic model and Java class definitions
<?xml version="1.0" encoding="UTF-8"?>

<display typeId="org.csstudio.opibuilder.Display" ... >

<width>1704</width>

<height>1325</height>

 <x>1090</x>

 <y>960</y>

<color.foreground>

<color blue="0" green="0" red="0" />

 </color.foreground>

<grid.show>true</grid.show>

...

<widget typeId="org.csstudio.opibuilder.widgets.Rectangle" version=”1.0” >

 <x>330</x>

 <y>770</y>

 <width>250</width>

 <height>180</height>

 <color.background>

 <color blue="255" green="0" red="0" />

</color.background>

...

 </widget>

...

</display>
Figure 10: An OPI file produced from the specific in-memory model

5.3. Packaging

The source code is packaged as JAR file that which can be run from command line or imported in other Java projects as library.
5.4. Test Plan

The testing is done using the JUnit framework. The testing is divided into two types, the testing done as part of the test driven development, and the testing of the final product.

5.4.1. Test Driven Development
The tests are done before the implementation is written. The scope for the individual tests is set based on the implementation segment; however, all tests combined cover every line of code.

5.4.2. Final Product Testing

As part of the final tests, the test specified in the requirements is done, and the tests for conversion validity.
Conversion validity tests trigger the conversion, then load the generated OPI file and test if all property values match the original ones. The scope of this is to test every specified widget and property type. The tests are simplified in case they overlap with the tests performed during test driven development.
Conversion validity test does not cover forward-backward conversion. Forward-backward conversion requires mapping in the opposite direction and has to handle information loss while transforming the data.
5.5. Documentation Plan

The documentation consists of two Word documents that contain the following sections:

· SPE-EDM_to_XML_Converter.doc

· Requirements defined at the start of the project.

· DES-EDM_to_XML_Converter.doc - this document

· User’s manual

· Programmer’s manual including an example for adding new widgets
· Design including an overview of functionality and the output format of the OPI files
The command line application interface and the model interface are provided in JavaDoc format. To generate the JavaDoc, follow instructions in 4.2.
6. Code Design

6.1. Packages

The source code is divided into the following packages:

· org.csstudio.opibuilder.converter
· Application interface
· org.csstudio.opibuilder.converter.model

· EDM data model interface with generic and specific widgets and properties

· org.csstudio.opibuilder.converter.parser

· Parsers for converting EDM files to a generic data model

· org.csstudio.opibuilder.converter.writer

· Writer for converting EDM data model to OPI XML file

6.2. Application Interface

The application interface consists of a single class EdmConverter with the main method that instantiates the data model, loads the EDM files in memory and writes the output, or displays help when parameters are wrong or absent.

6.3. Parser

The parser parses the loaded EDM files using regular expressions and interprets the contents into a generic data model. With regular expressions, irrelevant content and comments are skipped.

In case there is any data that remains unparsed, a warning is issued with extra data printed to standard output.

There are three parsers, for EDM display files, and for files with font and color definitions.

6.3.1. File Formats

The format of the EDM files is described in a pseudo grammar format. For all files, comments start with a hash symbol (#). They can appear at any position in the file, and extend to the end of the line they are located at.
6.3.1.1. EDM Display File (.edl)

EdmDisplayFile = Version ScreenProperties Object*

Version = major minor release

ScreenProperties = beginScreenProperties Property* endScreenProperties

Object = object type ObjectProperties

ObjectProperties = beginObjectProperties Property* Group Property* endObjectProperties
Group = beginGroup Object* endGroup

Property = type PropertyValue

PropertyValue = <null> | string+ | {string*}

Property definitions start only at the beginning of the line.
6.3.1.2. EDM Colors List (colors.list)
EdmColorsList = (IgnoredLine* StaticColorDef)*

StaticColorDef = static index "name" {r g b [rBl gBl bBl]}

All lines that do not match the static color definition format are ignored.

6.3.2. Class Hierarchy

· EdmParser

· EdmDisplayParser

· EdmColorsListParser

· EdmFontsListParser

6.3.3. Class Descriptions

6.3.3.1. EdmParser

EdmParser is an abstract class that contains basic functionality common for derived classes, such as file name and parsing data.
When the supplied file is not found, the parser throws a standard file-not-found exception.

6.3.3.2. EdmDisplayParser

EdmDisplayParser iterates through EDL data and stores it into EdmEntity classes, representing objects and groups.

If “edm2xml.robustParsing” system property is set to “true”, erroneous objects are ignored. If property is set to “false”, complete parsing procedure is terminated.
6.3.3.3. EdmColorsListParser

EdmColorsListParser takes the EDM Colors List file and parses static colors and inserts them as EdmAttributes into a single EdmEntity. Other information than static color data is ignored.
When parsing is robust, erroneous static color definitions are ignored and parsing is continued and not terminated.
6.3.3.4. EdmFontsListParser

EdmFontsListParser opens the given or default file the same way as EdmColorsListParser. For each font, name, weight, style and size strings are stored as one EdmAttribute.

6.4. Model

The root of the data model is the EdmModel object that contains a single EdmColorsList object for the colors list, and any number of EdmDisplay objects for EDM displays. The EdmModel is a singleton to provide an easy access to it from other data model classes, for instance to trigger recursively the loading of display files.
The files are first loaded as generic data containers, EdmEntity and EdmAttribute, and then specialized with derived classes. A new widget or property type is added by extending the base class and specifying its property types and optionally other functionality.
Once generated, the content of specific objects is read-only to avoid having to synchronize generic and specific data and revalidating the object (see 6.4.2.2 for details).

The specialization of the objects is done by passing the object to the constructor of its specialized object. If this fails due to incompatible types or missing properties, an exception is thrown. The model is built in such a way that in case the construction succeeds, the generic object is replaced with the specific one in the data model hierarchy, otherwise it is left in place.

6.4.1. Class Hierarchy

· EdmModel
· EdmEntity

· EdmColorsList

· EdmDisplay

· EdmWidget

· Edm_activeGroupClass

· Edm_activeRectangleClass

· Edm_activeXTextClass

· Edm_TextupdateClass

· EdmAttribute

· EdmBoolean

· EdmColor
· EdmDouble

· EdmFont

· EdmInt

· EdmLineStyle

· EdmMultilineText

· EdmString

· EdmAttributeAn
· EdmOptionalAn

· EdmException: Exception

6.4.2. Class Descriptions

6.4.2.1. EdmModel

EdmModel is a singleton class that represents the whole EDM model. Its interface provides loading the EDM display files and accessing color list. On construction it automatically loads the color list file, read from system property “edm2xml.colorsFile”.
6.4.2.2. EdmEntity

EdmEntity is a generic data container for EDM widget, group, or other similar objects, and a base class that is extended to define a specific widget type. Specific types are not generated automatically based on run time configuration as this would require an understanding of all possible widgets and properties and could limit generality otherwise.

The data model consists of a name to EdmAttribute map and an ordered set of EdmEntity sub-objects. Its public interface enables the adding the entities and attributes during the parsing process, but it must not allow the changing of already present data; this can break data consistency when this object is specialized. The protected interface allows this as it is called from the specialized constructor to replace generic properties with more specific.

EdmEntity is extended with a class named Edm_<edm object type>, where <edm object type> is the type of the widget the class represents, such as Edm_activeRectangleClass. The extending class defines properties by declaring annotated fields of primitive types or classes extending EdmAttribute, which are named after their corresponding properties. The types are not inferred automatically from property names, as the structure of the EDM C parser [2] suggests, this is not always a one-to-one mapping.

Derived classes are constructed using the constructor that is passed the generic EdmEntity object. On EdmEntity, this constructor copies the generic data on the object, and uses the run-time available annotations [4] and java language reflection [3] to construct the fields on the derived class. The fields of types extending EdmAttribute are set directly, while the primitive types are initialized by constructing the attribute class appropriate for the primitive type and getting the value from it. In this process, the generic EdmAttributes are replaced with constructed objects. Similarly, sub-entities are constructed by invoking their constructors. Missing classes and failed construction exceptions are caught and warning messages written to log4j.error output.
In case some attribute in specific interface is not required, it is annotated with EdmOptionalAn class. This will prevent parsing to fail if attribute is not specified in EDL file. In this case, outputting with writer must be implemented in such a way that optional EdmAttribute is first checked, whether it is initialized (EdmAttribute.isInitialized()) and only then written to XML.
6.4.2.3. EdmColorsList

EdmColorsList represents colors list content using a name to EdmColors map. It skips entries that cannot be parsed. It is constructed from EdmColorsListParser’s root EdmEntity, whose attributes are specialized.
6.4.2.4. EdmDisplay

EdmDisplay represents the model of one EDM display file, and contains the definition of the EDM screen properties.
6.4.2.5. EdmWidget

EdmWidget is a grouping class to separate EdmEntities representing widgets from other invisible classes.

6.4.2.6. Edm_activeRectangleClass
Edm_activeRectangleClass represents EDM rectangle widget.
6.4.2.7. Edm_activeXTextClass

Edm_activeXTextClass represents EDM static text widget.
6.4.2.8. Edm_TextupdateClass
Edm_TextupdateClass represents EDM TextUpdate widget.
6.4.2.9. Edm_activeGroupClass

Edm_TextupdateClass represents EDM group object.
6.4.2.10. EdmAttribute

EdmAttribute represents generic data container that holds the value of the EDM screen or object property. It contains an ordered set of strings. Its functionality is analogous to that of EdmEntity.

The derived classes either represent a specific property type, such as EDM color, or a property holding the value of a primitive type. During the primitive type object construction, if the property is not of the corresponding type, an exception is thrown.

EdmAttribute extended classes must be annotated with EdmAttributeAn class in order to be specialized. In case specific EdmAttribute does not always exist in EDL file, another annotation EdmOptionalAn must be added in order to avoid getting parsing exceptions (only warning is issued in this case). If optional EdmAttribute is not initialized, its isInitialized() method returns false and thus in specific Opi_ output class, its status must be checked.

6.4.2.11. EdmBoolean

EdmBoolean represents an EDM property of the primitive type boolean.
6.4.2.12. EdmColor
EdmColor is an EDM color attribute. It represents both color property from a display file and a static entry from the colors list file. It parses the generic strings to determine the format, which is either static entry, RGB color property or indexed color. In the case of indexed color it gets the EdmColorsList object and copies the color properties from it.

Color format specifications:

· RGB:
rgb red green blue [blinkRed blinkGreen blinkBlue]

· static:

static index “name” {r g b [rBl gBl bBl]}

· reference to static color:
index indexNumber

6.4.2.13. EdmFont

EdmFont represents EDM font attribute analogous to the EdmColor.

6.4.2.14. EdmInt

EdmInt represents an EDM property of the primitive type integer.

6.4.2.15. EdmLineStyle

EdmLineStyle represents an EDM property lineStyle property. It can be either SOLID or DASH.
6.4.2.16. EdmString

EdmString represents an EDM string property.
6.4.2.17. EdmDouble

EdmDouble represents an EDM property of the primitive type float or double.
6.4.2.18. EdmAttributeAn

EdmAttributeAn is an annotation class that is used to mark the attributes declared on the classes representing widgets. The annotation is available at run time.
The annotation currently does not generate the getter methods of the declared attributes automatically at compile time. This would fit with the design, but is not used since it requires an installation of special tool [5] within the Eclipse, and does not work automatically with a Java 1.5 compiler outside of Eclipse environment. With Java 1.6 compiler, it works automatically, requiring only the tools jar file to be included in class path.

6.4.2.19. EdmOptionalAn

EdmOptionalAn is an annotation class that is used to mark the attributes that do not always exist in EDM object definition in EDL file. If EdmAttribute is annotated with this class, exception is not thrown if it does not exist in EDL file, but only a warning.

Analogously, Opi output class must check if optional EdmAttributes have been initialized (have been specified in EDL file) with EdmAttribute.isInitialized() method and only then writing it in XML output.

6.4.2.20. EdmException

EdmException extends Exception and contains a type and debug messages for each exception type.
6.5. Writer

The writer package contains functionality to output OPI XML file and color definition file based on the model from model package. It builds up the output model as org.w3c.dom.Document and outputs it as xml using javax.xml.parsers package. This functionality also handles mapping of characters that are illegal in XML file.
6.5.1. Class Hierarchy

· Context

· OpiWriter
· OpiDisplay
· OpiColorDef
· OpiWidget
· Opi_activeGroupClass

· Opi_activeRectangleClass

· Opi_activeXTextClass

· Opi_TextupdateClass

· OpiAttribute

· OpiBoolean

· OpiColor
· OpiDouble

· OpiFont

· OpiInt

· OpiString

6.5.2. Class Descriptions

6.5.2.1. Context
Context holds the context information that is passed to each XML generation object. It contains the document, the element under which new content must be added, and the absolute position of the parent component.
6.5.2.2. OpiWriter

OpiWriter is the main class for writing files. It is a singleton and gets the reference to the EdmModel.
6.5.2.3. OpiDisplay

OpiDisplay represents the output model for a single display file. It receives EdmDisplay object and the empty DOM document and fills it with static content that is the same for every widget.

6.5.2.4. OpiColorDef

OpiColorDef receives the EdmColorsList object and outputs the color.def data in specified file name.
6.5.2.5. OpiWidget

OpiWidget gets EdmWidget object, DOM document and current DOM element, and creates common OPI widget elements.

The derived classes of OpiWidget specify the OPI class name, and create specific elements and attributes under the DOM document for the represented class.

6.5.2.6. Opi_activeGroupClass

Opi_activeGroupClass contains XML definition of a grouping container widget. Optional EdmAttributes must be checked for existence with EdmAttribute.isInitialized() method before writing to output.

6.5.2.7. Opi_activeRectangleClass

Opi_activeRectangleClass contains XML definition of a Rectangle widget. Optional EdmAttributes must be checked for existence with EdmAttribute.isInitialized() method before writing to output.
6.5.2.8. Opi_activeXTextClass

Opi_activeXTextClass contains XML definition of a static text widget. Optional EdmAttributes must be checked for existence with EdmAttribute.isInitialized() method before writing to output.
6.5.2.9. Opi_TextupdateClass

Opi_TextupdateClass contains XML definition of a TextUpdate widget. Optional EdmAttributes must be checked for existence with EdmAttribute.isInitialized() method before writing to output.
6.5.2.10. OpiAttribute
OpiAttribute is a base class for attribute XML definitions.
6.5.2.11. OpiBoolean

OpiBoolean contains standard XML definition for a boolean value. It is represented as an element with the content true or false.
6.5.2.12. OpiColor
OpiColor contains standard XML definition for a color. The definition is either a color name, or a RGB description when color name is absent.
6.5.2.13. OpiDouble

OpiDouble contains standard XML definition for a double value.
6.5.2.14. OpiFont

OpiFont contains standard XML definition for an EDM font.

6.5.2.15. OpiInt

OpiInt contains standard XML definition for a integer value.

6.5.2.16. OpiString

OpiString contains standard XML definition for a string.

7. Y IF ="Y" "References" "Viri"
References

[1] Fat-Jar Eclipse Plug-In: http://fjep.sourceforge.net/
[2] EDM - Extensible Display Manager: http://ics-web.sns.ornl.gov/edm/
[3] Java Reflection API: http://java.sun.com/docs/books/tutorial/reflect/
[4] Java Annotations: http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
[5] Project Lombok: http://www.projectlombok.org/
�

[image: image9.wmf]
	YIF = "Y" "[image: image4.emf]""[image: image5.emf]"
[image: image6.emf]

	Y IF = "Y" "N IF = "Y" "Confidential" "Public"
Public
" "Copyright © 2007 by Cosylab" * MERGEFORMAT
Public

	– ii –
	Y IF = "N" "N IF = "Y" "Confidential" "Public"
Public
" "Copyright © 2009 by Cosylab" * MERGEFORMAT
Copyright © 2009 by Cosylab

	[image: image7.emf]

	Copyright © 2009 by Cosylab
	– iii –
	N IF = "Y" "Confidential" "Public" *MERGEFORMAT
Public

[image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8][image: image9.wmf][image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf][image: image15.emf][image: image16.wmf][image: image17.emf]D

RAFT

