Aug. 13, 2009


Comments, clarifications and specifications for offer 48/2009: EDM-to-other-SML file translator

Overview and Background

Purpose of this tool is a translator from EDM display files (*.edl) into the format used by a new operator interface builder/display renderer (DR) under development at the SNS. It combines much of the CSS Synoptic Display (SDS) technology with usability ideas taken from EDM. It uses Eclipse and GEF to implement a feature-rich editor, and the CSS PV layer to implement widgets with EDM-like functionality, displaying the PV’s value but also reacting to alarms, changes in connection state or read/write access without requiring per-property dynamic-ization as in the SDS. The optional attachment of PV-driven scripts to widgets can be used to add dynamic behavior to displays beyond the widget’s built-in functionality.

We would like to create a translator from EDM files in parallel with the ongoing display renderer development. The XML file format is seen as a well-defined interface between the translator and the new tool. While it might be technically interesting to have the translator directly create the display renderer in-memory model from EDM files, this would require the developers of the translator to install, understand and frequently update the DR and related CSS plug-in sources. By reducing the interface to the XML file, the translator can be written as an Eclipse plug-in that only exposes a library API for reading EDM files and writing XML output without further DR/CSS dependencies.

Item 1: Environment set-up (eclipse plug-in, etc)

Should use Eclipse 3.5, targeting JVM 1.5. May use JVM1.6, but should not depend on features only available in JVM1.6. The scope of the project should avoid CSS plugin dependencies.
Item 2: EDM file parser with EDM widgets (Graphics/Label, Graphics/Rectangle, Monitor/TextUpdate),
Item 3: Java model to XML output 

The EDM file parser should read and create an in-memory model of every property of every widget. It should handle grouping (..beginGroup ... endGroup in EDL file) and in-front-of/behind layering (order of widgets in EDL file). It should understand the format of EDM colors and fonts, for example turn a colors ‘index’ in the EDM file into the corresponding color name and RGB values. For the remaining properties it should simply keep track of the property name and value information.

The code that creates the XML output initially only needs to “understand” a limited subset of widgets and the meaning of their properties:

· Create output for EDM Label, Rectangle and TextUpdate widgets

· Translate position/size from EDM widget properties to XML output

· Translate foreground/background color

· Translate optional ‘visibility’ PV & value range

· Translate primary PV name (for TextUpdate’s value)

SNS will provide an example XML file that defines the format of the above widget properties.

Item 4: Documentation, including thorough documentation of the source code

The documentation should make it obvious to Java programmers how the code parses EDM files, how the properties of all EDM widgets are stored in memory, and how a specific EDM widget type and its properties are translated into XML output.
Item 5: Junit test, showing example conversions

SNS will provide four (4) example EDM files. Tests should demonstrate:

· Parser reads example files without hangup

· Model contains widgets, properties, …

· An “unknown” widget type in the EDM file is found in the in-memory model, even though it is not considered in the XML output.

· XML output contains the translations for Label, Rectangle and TextUpdate widgets.


Basic pseudo-code:

// Parse ‘example1.edl’
EDMModel edm = new EDMModel(“example1.edl”);

// Have basic screen info like ‘widths’
assertEquals(600, edm.getProperty(“w”));

// All widgets in example1.edl are parsed
assertEquals(50, edm.getWidgetCount());

// Parser has understanding of ‘color’
assertTrue(edm.getWidget(2).getProperty(“fgColor”)
           instanceof EDMColor);
EDMColor color = (EDMColor)edm.getWidget(2).getProperty(“fgColor”);
assertEquals(90, color.getRed());

// ‘Embedded Window’ widgets are not, yet, handled in the XML output,
// but their EDM information is already parsed:
assertEquals(“Embedded Window”, edm.getWidget(17).getType());
assertEquals(5, edm.getWidget(17).getProperty(“sizeOfs”));

// Create output
edm.createXML(“example1.xml”);

1

