
Device and Driver Support for F3RP61 (Re v. 1.0)

J. Odagiri

Contents

1. Overview

2. Device type

3. Accessing I/O module

4. Handling special module

5. Communication with sequence CPU

6. A caution in using F3RP61 and sequence CPU side-by-side

7. I/O interrupt support

1. Overview

This device and driver support can be used to run EPICS iocCore on an embedded

Linux controller, F3RP61 (e-RT3 2.0), made by Yokogawa Electric Corporation. The

controller, F3RP61, can access any I/O channel of any I/O module of FA-M3 PLC on the

PLC-bus (base unit). This feature opens way for making an FA-M3 PLC itself a new

type of IOC. The device and driver support interfaces the iocCore with the I/O modules

as well as sequence CPUs that runs on the same base unit. The device and driver

support is implemented by wrapping the APIs of the kernel-level drivers, which are

included in the Board Support Package (BSP) of F3RP61.

The device and driver support offers only primitive method to access relays and

registers of the I/O modules and sequence CPUs. In the sense that any relay and any

register can be accessed by the device and driver support, it is universal. However, in

order to handle a special module that requires some sequence logic to execute the I/O

operation, the sequence logic needs to be implemented by using an EPICS sequencer

program by the user. (The sequence logic to handle a special module is implemented by

using a ladder program when a sequence CPU is used to execute the I/O operation. The

EPICS sequencer program is used to replace the ladder program.) If some initialization

is required on a special module, it can be done by using an EPICS sequencer program,

or a runtime database comprised of records that have PINI field value of “YES”.

An F3RP61 can work as an IOC with/without sequence CPUs that run ladder

programs. If no sequence CPU is on the base unit, the F3RP61 should manage all I/O

activities. If one or more sequence CPUs are on the base unit, some of the I/O modules

can be controlled by the sequence CPU and the others can be controlled by the F3RP61.

It is recommended that the I/O module under the sequence CPU’s control be accessed

indirectly by the IOC (F3RP61) through the internal devices of the sequence CPU. (See

section 6 for more detail.)

Digital input modules of FA-M3 can interrupt CPUs upon a change of the state of

the input signal. The BSP of F3RP61 has a function that transforms the interrupt into a!

message to a user-level process running on it. Based on this function, the device and

driver support supports processing records upon an I/O interrupt.

2. Device type

In order to use the device and driver support, the device type (DTYP) field of the

record must be specified to either “F3RP61” or “F3RP61Seq”. The former is for accessing

the relays and registers of the I/O modules and the shared memory. The latter is for

accessing internal devices (“D”, “I”, “B”) of the sequence CPUs on the same base unit.

3. Accessing I/O module

3.1. Accessing input relay (X)

Input relays are read-only devices. Binary input (bi) records, multi-binary input

direct (mbbiDirect) records, long input (longin) and analog input (ai) records are

supported by the device support. Three numbers, unit number, slot number. and the

input relay number must be specified in the INP field as the following example shows.

record(bi, “f3rp61_example_1”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S2,X1”)

}

The above record reads a value of either “on” (1) or “off” (0) from the first input relay

(X1) of an I/O module in the second slot (S2) of the main unit (U0). The next example

shows how to read 16 bits of status data on a group of input relays by using mbbiDirect

records.

record(mbbiDirect, “f3rp61_example_2”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S2,X1”)

}

In this case, the number in “X1” specifies the first relay to read. The status bits on

X1 to X16 are read by the mbbiDirect record.

The next example shows how to read a digital value of 16 bits on a group of input

relays by using longin records.

record(longin, “f3rp61_example_3”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S2,X1”)

}

In this case, it is assumed that the Least Significant Bit (LSB) is on X1 and the

Most Significant Bit (MSB) is on X16, and the value on the input relays is signed one. If

the value is unsigned one, “&U” must follow the relay number as follows.

record(longin, “f3rp61_example_4”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S2,X1&U”)

}

If the value is signed 32 bit one, “&L” must follow the relay number.

record(longin, “f3rp61_example_5”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S2,X1&L”)

}

Currently, unsigned 32 bit value is not supported.

The rule explained in the last three examples applies to ai records. The value read

from the input relays goes into the raw value (RVAL) field of the ai record.

3.2. Accessing output relay (Y)

Output relays are read-write devices. Just replacing ‘X’ with ‘Y’ in the INP fields of

the example records shown in the previous subsection suffices to read output relays.

In order to write them, binary output (bo) records, multi-bit binary output direct

(mbboDirect) records, long output (longout) records, and analog output (ao) records can

be used.

record(bo, “f3rp61_example_6”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S2,Y1”)

}

The above records writes a value of either “on” (1) or “off” (0) onto the first output relay

(Y1) of an I/O module in the second slot (S2) of the main unit (U0).

The next example shows how to write 16 bits of status data onto a group of output

relays by using mbboDirect records.

record(mbboDirect, “f3rp61_example_7”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S2,Y1”)

}

In this case, the number in “Y1” specifies the first relay to write. The status bits are

written onto Y1 to Y16 by the mbboDirect record.

The next example shows how to write a value of 16 bits onto a group of output

relays by using longout records.

record(longout, “f3rp61_example_8”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S2,Y1”)

}

In this case, it is assumed that the Least Significant Bit (LSB) goes onto Y1 and the

Most Significant Bit (MSB) goes onto Y16, and the value is signed one. If the value is

unsigned one, “&U” must follow the relay number as follows.

record(longout, “f3rp61_example_9”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S2,Y1&U”)

}

If the value is signed 32 bit one, “&L” must follow the relay number.

record(longout, “f3rp61_example_10”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S2,Y1&L”)

}

Currently, unsigned 32 bit value is not supported.

The rule explained in the last three examples applies to ao records. The value in the

raw value (RVAL) field of the ao record is written onto the output relays.

3.3. Accessing data register

Analog I/O modules and other special modules, such as motion control modules,

serial communication modules, etc., have many registers to hold the I/O data and

relevant parameters. In order to read/write these registers, longin/longout, ai/ao records

and mbbiDirect/mbboDirect records are supported. While some of the registers can be

32 bit ones, the device and driver support supports only reading/writing a value of 16

bits. 32 bit registers must be read/written, according to the specification of the I/O

module, by using two records, one for the upper half and the other for the lower half of

the 32 bit value.

The following example shows how to use longin records to read a 16 bit register.

record(longin, “f3rp61_example_11”) {

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S3,A1”)

}

The above record reads a value of 16 bit data from the first register (A1) of a module

in the third slot (S3) of the main unit (U0).

The following example shows how to use longout records to write a 16 bit register.

record(longout, “f3rp61_example_12”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S3,A1”)

}

The above record writes a value of 16 bit data onto the first register (A1) of a

module in the third slot (S3) of the main unit (U0).

The rule to specify an input (output) register address applies to ai (ao) records. The

value read from (written onto) the device comes in (goes out) via the RVAL field of the ai

(ao) records.

4. Handling special module

This section describes how to handle special modules that require some sequence

logic to execute I/O operations. As an example, we consider a motion control module

that controls the motion of a stepping motor by sending a train of pulses to the motor

driver.

Suppose you drive a motor dedicated to an axis. In the first place, you make the

F3RP61 set the number of pulses (distance) into a register of the motion control module

by using longout or ao record(s). (Since the parameter is 32 bit long, two records are

necessary to set the upper 16 bits and the lower 16 bits.)

Next, you make the F3RP61 turn on an output relay (EXE) to trigger the action.

This can be performed by putting the value of one (1) into the VAL field of the following

record. (The relay number varies from type to type. The following example records are

just for illustration. See the manual of the module you use for the information. We

assume the motion control module is in slot 4.)

record(bo, “f3rp61_motion_exe”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@U0,S4,Y33”)

}

The motion control module will respond to the command by turning on an input relay

(ACK) if no error is found in the parameters given. The F3RP61 needs to check the ACK

by monitoring the VAL field of the following record.

record(bi, “f3rp61_motion_ack”) {

 field(SCAN, “.1 second”)

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S4,X1”)

}

And then, the operation (sending pulses) starts. The F3RP61 is required to turn off the

EXE after the ACK is turned on. The motion control module, then, turns off the ACK

after the EXE is turned off.

When the operation completes, the motion control module informs the F3RP61 of

the completion by turning on yet another input relay (FIN). Just like the ACK, the FIN

needs to be checked by monitoring the VAL field of the following record.

record(bi, “f3rp61_motion_fine”) {

 field(SCAN, “.1 second”)

 field(DTYP, “F3RP61”)

 field(INP, “@U0,S4,X5”)

}

Note that the records to monitor the input relays must be processed periodically.

The essential part of the EPICS sequencer program to manage the sequence

described above in words will look like as follows.

 ss exe_move {

 state wait_exe {

 when (f3rp61_motion_exe) {

 } state wait_ack

 }

 state wait_ack {

 when (f3rp61_motion_ack) {

 f3rp61_motion_exe = FALSE;

 pvPut(f3rp_motion_exe);

 } state_wait_fin

 }

 state wait_fin {

 when(f3rp61_motion_fine) {

 } state wait_exe

 }

 }

The author reminds you that the above example is just for an illustration. The

sequencer for the real operation involves a little bit more to handle many different types

of commands of the motion control module, and to handle exceptions that can occur in

the sequence (for example, an error caused by a wrong parameter set by the user).

5. Communication with sequence CPU

Two different types of methods are supported for an F3RP61 to communicate with a

sequence CPU that works on the same unit. One method is based on the shared memory

and the other is message-based communication. The former is fast access that finishes

instantly, just like the access to I/O relays and registers of an I/O module. The latter is

slow access that takes a few milliseconds of time to complete the transaction. For this

reason, the device and driver support is separated into the two parts, the synchronous

part (“F3RP61”) for the former and the asynchronous part (“F3RP61Seq”) for the latter.

5.1. Communication based on shared memory

The following is the basics to understand how the communication between F3RP61s

and sequence CPUs works.

! Each CPU, an F3RP61 or a sequence CPU, has its own region.

! Any CPU, an F3RP61 or a sequence CPU, can write only its own region.

! Any CPU, an F3RP61 or a sequence CPU, can read any region.

In order to make the story simple, we consider the case where only one F3RP61 in

slot 1 works with only one sequence CPU in slot 2 on the base unit. (See, Fig.1) From

the rules mentioned above, how we can use the shared memory to make those two CPUs

communicate each other is clear.

! If the data go from the F3RP61 (CPU1) to the sequence CPU (CPU2), use the

area of the F3RP61 (CPU1), and vice versa.

While the sequence CPU can access the shared memory by bit (shared relay) or by

CPU1

CPU1

(F3RP61)

CPU2

(Sequence

CPU)

Read

Othe

r

recor

d

types

, ai

and

mbbi

Direc

t, are

also

supp

orted

to

read

the

Writ

e

Read

Write

Fig. 1

rite

CPU2

Shared Memory

te

word (shared register), the F3RP61 can access it only by word. With the aid of the

ladder program development tool, WideField2, you can configure the shared memory

area by specifying the number of shared relays and shared registers for each of the

CPUs.

In the first place, we consider setting values from the F3RP61 to the ladder program

running on the sequence CPU. The following record allows the F3RP61 to write the first

word in the region, “CPU1” in Fig. 1.

record(longout, “f3rp61_example_13”) {

 field(DTYP, “F3RP61”)

 field(OUT, “@CPU1,R0”)

}

Suppose the area, “CPU1”, is configured as a set of shared relays, which is

referenced by the ladder program running on the sequence CPU. When the F3RP61

writes a word into the area, the ladder program sees a write on 16 shared relays

(E00001-E00016) occur all at once.

In contrast, if the area is configured as a set of shared registers, the ladder program

sees a write on one shared register (R00001) occur. Note that the addressing manner is

different between F3RP61’s I/O space and “PLC device” referenced by ladder programs.

While the former starts from zero (R0), the latter starts from one (R00001).

If the area is configured as both shared relays and shared registers, the former

comes first and the latter follows them. For example, supposed the area, “CPU1”

includes two words of relays (32 relays) and four words of shared registers. The address

map looks like as follows.

R0: E00001 – E00016

R1: E00017 – E00032

R2: R00001

R3: R00002

R4: R00003

R5: R00004

Next, we consider reading values written by the sequence CPU. By using the

following record, the F3RP61 can read the first word from the region, “CPU2” in Fig. 1,

which starts form just after the last word in the above address map, i.e., R6.

record(longin, “f3rp61_example_14”) {

 field(DTYP, “F3RP61”)

 field(INP, “@CPU2,R6”)

}

What the F3RP61 sees varies depending on how the area is configured. It can be 16

bits of shared relays or one word of shared register as explained above.

You might think that there is no reason to specify the CPU number in the INP field

if the shared memory is a flat space being addressed by a series of sequential address

numbers. However, we do need to specify the CPU number as shown in the above

example. We do not discuss it any more since it is a bit complicated story. See the

relevant manuals of F3RP61 for more details.

Other record types, ai/ao and mbbiDirect/mbboDirect, are also supported to

read/write the shared memory.

5.2. Accessing internal device of sequence CPU

The alternative for an F3RP61 to communicate with a sequence CPU is to use the

message-based transaction supported by the kernel-level driver. The following example

shows how to set (1)/ reset (0) an internal relay (‘I’) of a sequence CPU in slot 2.

record(bo, “f3rp61_example_15”) {

 field(DTYP, “F3RP61Seq”)

 field(OUT, “@CPU2,I4”)

}

 Note that the device type must be “F3RP61Seq” in this case. In order to read back

the result, you can use the following record.

record(bi, “f3rp61_example_16”) {

 field(DTYP, “F3RP61Seq”)

 field(INP, “@CPU2,I4”)

}

In order to write a data register (‘D’) of the sequence CPU, the following record can

be used.

record(longout, “f3rp61_example_17”) {

 field(DTYP, “F3RP61Seq”)

 field(OUT, “@CPU2,D7”)

}

Again, the result can be read back by using the following record.

record(longin, “f3rp61_example_18”) {

 field(DTYP, “F3RP61Seq”)

 field(INP, “@CPU2,D7”)

}

Other record types, ai/ao and mbbiDirect/mbboDirect, are also supported to read

the data registers. Another internal device, file registers (‘B’), can be read/written by

using those record types. Accessing other internal devices than ‘I’, ‘D’ and ‘B’ is not

currently supported.

6. A caution in using F3RP61 and sequence CPU side-by-side

This section gives you a caution in using an F3RP61 to monitor the relay status of

the I/O modules that are used by a sequence CPU on the same base unit.

The point is rebooting the F3RP61 can stop the ladder program running on the

sequence CPU if the F3RP61 has had a direct access to the I/O module for the reason

described below.

When an I/O module is accessed by the F3RP61, the I/O module recognizes and

remembers that the F3RP61 is its master. When the Linux system on the F3RP61 is

rebooted, the F3RP61 broadcasts the fact by using a signal on the PLC-bus. The I/O

modules that recognize the F3RP61 as their master reset themselves when they detect

the signal. This makes the I/O modules un-accessible by the sequence CPU and makes

the ladder program stop with an I/O error, if the I/O modules are used by the sequence

CPU.

For this reason, it is preferable to read the relay status indirectly via some internal

devices (‘I’, ‘D’, ‘B’) of the sequence CPU or the shared memory (‘E’, ‘R’) by using one of

the methods described in the previous section.

7. I/O interrupt support

Digital input modules of FA-M3 can interrupt CPUs when they detect a rising edge

or falling edge of the input signals. The kernel-level driver can transform the interrupt

into a message to a user-level process. Based on the function, processing records by I/O

interrupt is supported. Any records that have the DTYP field value of “F3RP61” and the

SCAN value of “I/O Intr” get processed upon an interrupt on a specified channel of the

specified module. This feature allows you to trigger a read/write operation by external

trigger.

Suppose a unit comprised of an F3RP61 (slot 1), a digital input module (slot2) and

an A/D module (slot 3). The following record reads the first data register (A1) of the A/D

module upon a trigger input onto the first channel (X1) of the digital input module. (The

INP field specification is “@[I/O data channel]:[interrupt source]”.)

record(ai, “f3rp61_example_19”) {

 field(DTYP, “F3RP61”)

 field(SCAN, “I/O Intr”)

 field(INP, “@U0,S3,A1:U0,S2,X1”)

}

If you add a D/A module in slot 4, you can write output data into the first data

register (A1) of the D/A module upon the same interrupt by using the following record.

record(ao, “f3rp61_example_20”) {

 field(DTYP, “F3RP61”)

 field(SCAN, “I/O Intr”)

 field(OUT, “@U0,S4,A1:U0,S2,X1”)

}

The following example might seem a little bit strange, but it helps you see how quick

F3RP61 can respond to interrupts.

record(bi, “f3rp61_example_21”) {

 field(DTYP, “F3RP61”)

 field(SCAN, “I/O Intr”)

 field(INP, “@U0,S2,X1:U0,S2,X1”)

}

This bi record reads the status of the input relay into which the trigger signal goes.

Suppose the trigger signal is a pulse and the digital module generates an interrupt at

the rising edge. If the bi record, which gets processed by the interrupt, can read the

status before the signal level falls down to low, the record reads “high” (1). Otherwise, it

reads “low” (0). By changing the pulse duration with checking the record value, you can

see how long it takes for the record to get processed starting from the interrupt.

