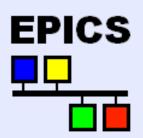


Real-time Performance Improvement of "EPICS on F3RP61"

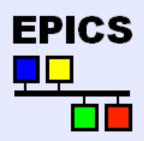
Yokogawa Electric Corporation


agenda

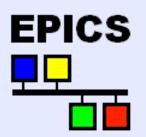
- ➤ EPICS on F3RP61
 Features of F3RP61
- ➤ Stability and Record Application Example
- ➤ Real-time Performance
 Latency Measurement
 Measured Performance
- **→ Demonstration Video 2011**
- **≻** Conclusions

EPICS on F3RP61

- ➤ KEK placed a request for FA-M3-PLC's CPU, F3RP6x (e-RT3), to run Linux
 - EPICS device support and driver for F3RP61 was developed by Mr. J.Odagiri (KEK)
- > To turn PLCs themselves into IOCs
 - Most of ladder programs can be replaced with EPICS Sequencer
- > For fully EPICS-based front-end control
 - Rapid application development cycle
 - Easier maintenance
 - Finer and more flexible control



Pb free RoHS

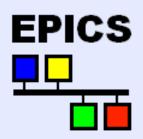

Features of F3RP61

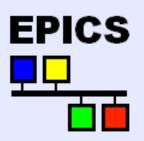
- Operating System
 - Linux and VxWorks available
- > Processer and Interface
 - PowerPC 533MHz
 - Ethernet x2, Serial IO, IEEE1394, CF Card
 - Can use many kind of PLC modules
- > Maintenance
 - Operation under 55°C circumstance
 - Long term product supply
- > Other feature
 - Multi CPU Function, I/O Open

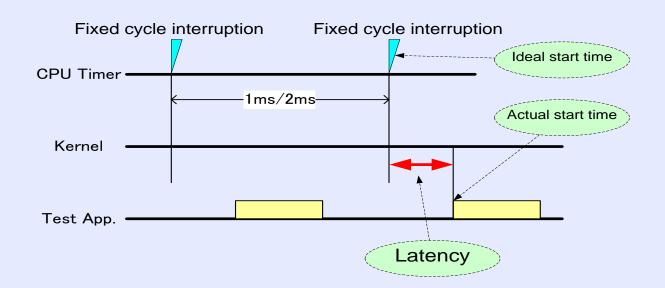
Stability and Records

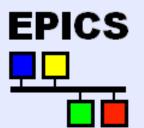
- ➤ F3RP61 has served as IOC for more than two years to prove its stability
- ➤ The number of F3RP61-based IOCs has reached dozens in the KEK sites (Tsukuba and Tokai)
 - KEKB (Main Ring / Linac) / PF-Ring / PF-AR / J-PARC / cERL etc.
- >Standard kernel 2.6.24.3/2.6.26.8-based
 - Modification was minimized in the porting

Application Examples



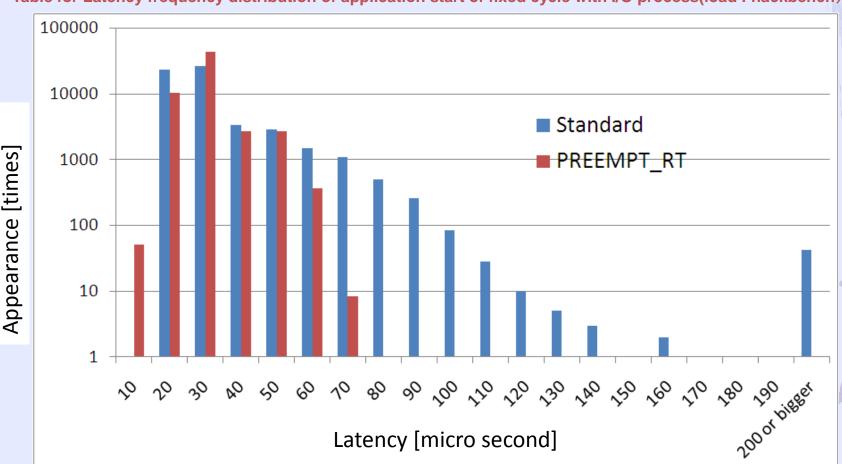


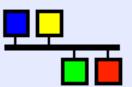

Real-time Performance


- Latest Board Support Package(BSP) supports CONFIG_PREEMPT_RT option
- > All improvements are in the kernel
 - More preemptive than CONFIG_PREEMPT
 - Large part of interrupt handlers were demoted to kernel threads to give way to real-time threads
- **➤** No changes in APIs
 - No need to modify applications already in operation
 - Just choosing ulmageRT in the BSP will do it for you

Latency Measurement

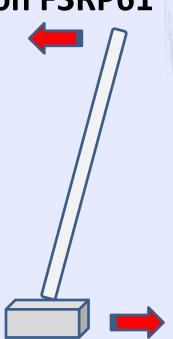
- Latency Measurement by using fixed cycle interrupt
 - With CPU load caused by hackbench
 - ✓ hackbench creates many processes communicating with each other under the scheduler's control




Measured Performance

	Standard	PREEMPT_RT
Max. Latency	1,065 µs	92 μs

Table for Latency frequency distribution of application start of fixed cycle with I/O process(load : hackbench)

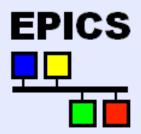


EPICS



__ Demonstration Video 2011

- > Inversed pendulum controlled by EPICS on F3RP61
 - A metal bar on a movable cart
 - Monitor input
 - ✓ Angle of the pendulum
 - ✓ Position of the cart
 - Control output
 - √ Velocity of the cart
- By using an EPICS special record
 - Developed by Dr. N. Yamamoto (J-PARC)
 - To calculate the feedback output
 - By processing the record every "0.005 second"



Conclusions

- > A new type of EPICS IOC was realized with F3RP61
- Widely adopted in EPICS-based accelerator control for various purposes
- Significantly improved real-time performance with PREEMPT_RT patch
 - To Extend the range of applications

Thank you for your attention.

➤ We do need feedback from EPICS users for further improvements