

Recent Control Development at KEK

Kazuro Furukawa, KEK

KEKB and Linac Control Groups

<kazuro.furukawa@kek.jp>
Dec. 16. 2008.

- PLC with Embedded EPICS
- Event system
- **♦ FPGA-based system**
- Reliability improvement

KEKB & Linac

- Further Electron-Positron Collider Experiments at KEKB
 - Contributed Nobel Prize to Kobayashi-Maskawa
 - Maintenance Difficulties
 - **In Software and Hardware after 10-years of Operation** ■
 - **□** Transition from CAMAC to PLC, etc.
 - □ Transition to Newer versions of Software
 - After Stable Usage of VxWorks-5.3.1, EPICS-3.13.1.
 - Still Intensive Use of Scripting Languages
 - **■SAD-script, Python, Tcl.**
 - Zlog operation log improvements
 - **□ Used also at RIKEN, J-PARC, and BINP**
 - Adding New Devices
 - **□ For Improved Machine Performance**
 - New Hardware like Linux-embedded PLC Controller (F3RP61) for Beam-mask, Pulsed-quad, etc.
 - *EPICS-3.14.9, Linux-2.6, Procserv, Pcmon, Asyn

PLC with Embedded Linux/EPICS

Linac & PF & KEKB

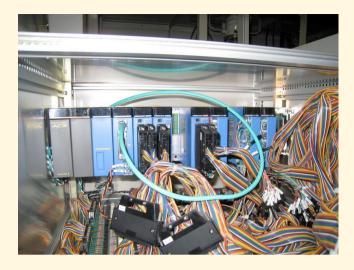
- Simultaneous Continuous Injection to PF, KEKB-HER and KEKB-LER
 - **❖50Hz Beam Pulses are Shared between 3 Rings**
 - ™With very different Beam Properties, in Energy, Charge, etc.
 - **❖50Hz Beam Instrumentation (Beam Position Monitor)**
 - **□** Only Passive Components other than Oscilloscope (Tek-DPO7104)
 - *Windows-embedded (3GHz Intel), EPICS-3.14.9, VC++
 - ☐ One Oscilloscope reads 2-5 BPMs, 24 Oscilloscopes Installed
 - Synchronized 100-BPM Read-out
 - Intruduction of Event System, EVG230-EVR230RF/EVR200
 - **10 EVR's Installed, 1/3 of Old Timing Stations Replaced**
 - VxWorks-5.5.1, EPICS-3.14.9, (Gave-up with RTEMS)
 - □ Event drives Low-level RF in VME, BPM Oscilloscopes over Network
 - □ Gun Parameters, Pulsed Magnets, Kickers, etc are Controlled 50Hz
 - □ Beam Pattern Rules on Client Script, can be Downloaded every second
 - More Development Needed
 - □ Flavoured Beam Feedback Systems
 - **Event System Integrity Monitor**

EVG & Timing

EVR & LLRF

PLC usage

- At Linac
 - We enforced that all the controllers should be connected over IP/Ethernet
 - ❖PLC was much cost-effective compared with VME
 - if the speed requirement allows
 - Products from OMRON, Mitsubishi, Yokogawa were installed
 - □ Only Yokogawa (FAM3) increased, because maintenance capability over network was better
 - Ladder software downloadable over IP/Ethernet
 - (Recently Mitsubishi also added that feature)
 - *150 PLCs used at Linac for RF, Magnets, Vacuum, Safety, etc
- At J-PARC
 - Many installations with the same reason as Linac
- At KEKB
 - Used indirectly at many devices, over serial or GPIB links


Software management

- Ideal at the beginning
 - Separate software development at control group, at equipment group, or at industrial company
 - Later, integration test IP/Ethernet
- Logic management
 - ❖Same logics could be placed at ladder software, in EPICS database/squencer (or in high-level applications)
- Speed requirement
 - Closed loop over Ethernet was slow, sometimes un-reliable
 - Socket-based interrupts were possible, but complicated
- Hoped to run EPICS on PLC

Vacuum Controller Internal

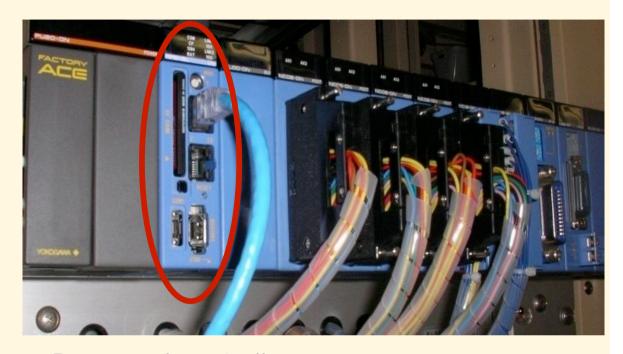
Magnet Controller Internal

RF Controller Internal

Safety Controller

Touch Panel Display for RF

EPICS on PLC

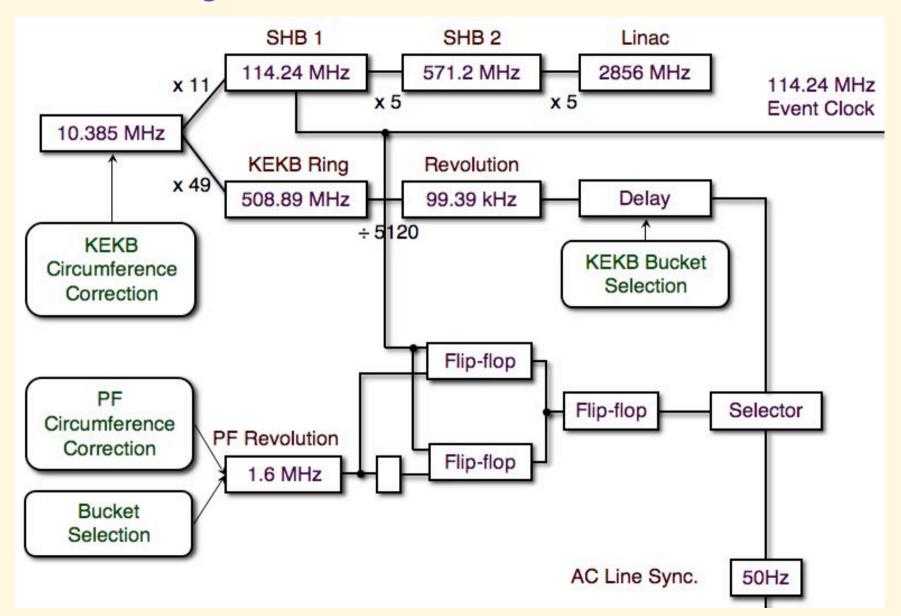

- VxWorks was available on PLC (Yokogawa, Mitsubishi)
 - **❖We use VME for realtime performance with VxWorks**
 - ❖License management of vxWorks ...
- Yokogawa starts to provide Linux (2.6) on PLC CPU
 - Brave enough to choose open source environment
 - □ We negotiate with Yokogawa to remove any license issues
 - Odagiri/KEK, Uchiyama/SHI, Yamada/Tokyo-u made much effort to realize the implementation
- Three of them are used in KEKB operation
 - Beam mask controller and Pulsed-quad controller
 - It run 57-days before software upgrade without troubles

F3RP61

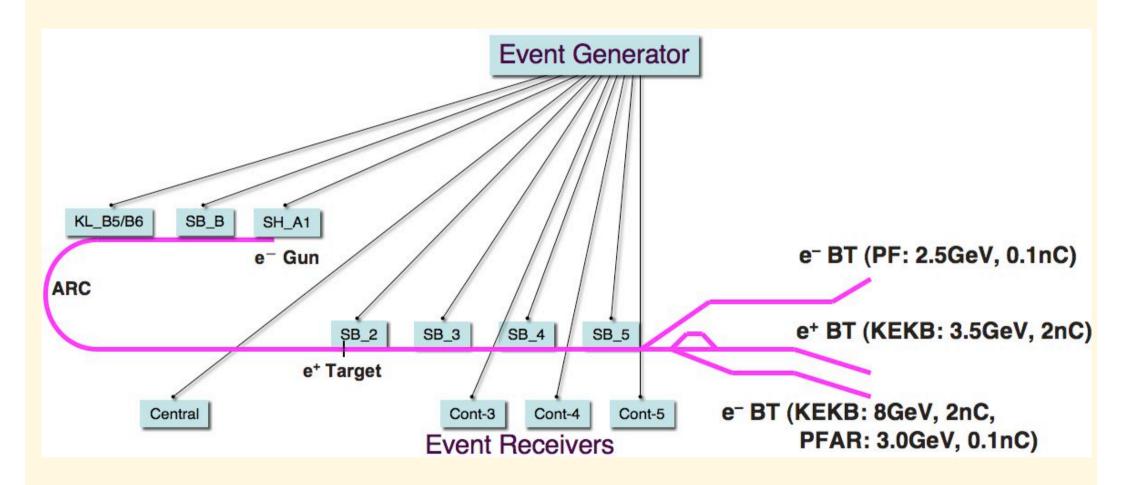
Linux 2.6.24
PPC 533MHz
128Mbyte RAM
100BaseTx x 2
USB
IEEE1394
Serial
PCI

Beam mask controller

I/O Bus for FAM3 Module Interface Software development environment

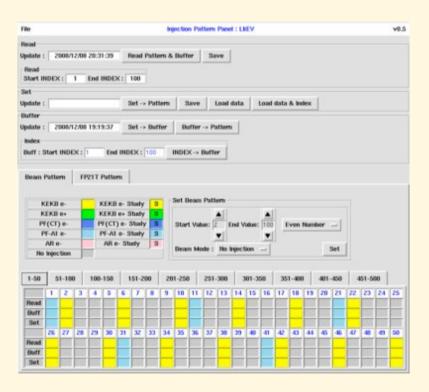

Event System

- Quasi-simultaneous Injection
 - *to KEKB-HER, KEKB-LER, and PF
 - 2.5GeV to 8GeV, 0.1nC to 10nC
- Stable stored beam current at three rings
 - Should improve collision tuning with Crab cavities
 - Should improve the quality of experimental data at PF
- Fast switching of many device parameters
 - ❖In 20ms / 50Hz
 - Should be reliable because beam power is much different
- MRF Series 230 Event Generator / Receiver
 - **❖VxWorks 5.5.1, MVME5500, (Originally with RTEMS but...)**
 - Timing precision less than 10ps (TD4 provides 3ps)
 - Multi-mode fiber and single-mode fiber for longer distance


Basic synchronization outside of EVG

Event system configuration, autumn 2008

Beam mode pattern generation

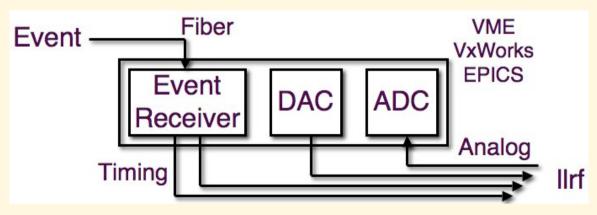

- Every pulse (every 20ms) corresponds to a beam mode.
- ◆10 different beam modes are defined (for KEKB e+, etc).
- One beam mode may contain many event codes.
- About 50 event codes are defined.
- ◆Some events correspond to many functions, and others to specific devices.
- ◆Beam pattern buffer length (n) can be 2 to 500 (20ms x 500 = 10 seconds).
- ♦A new pattern is loaded at the end of the previous pattern.
- Otherwise, the pattern repeats forever.
- ◆Pattern generator software arbitrates requests from downstream rings.
- ◆There are many pattern rules due to pulse device features and limitations.

Beam mode pattern generation

Pulse 1Pulse 2Pulse 3Pulse nBeam Mode 1Beam Mode 2Beam Mode 3......Beam Mode n

Manual pattern designer

A version for current operation

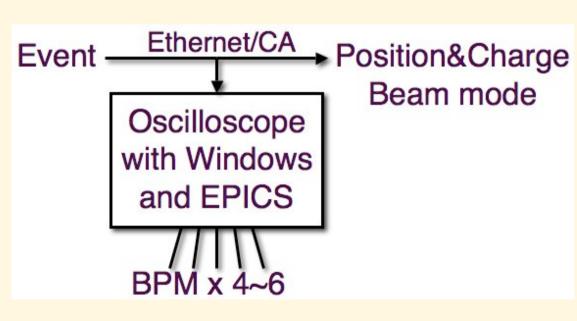

LLRF

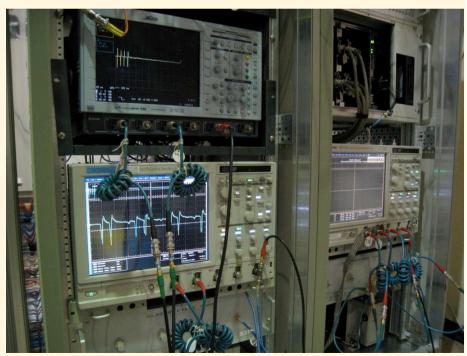
Timing and analog signals are essential for absolute energy, energy spread, and dual-bunch energy equalization.

♦ Signals can be switched pulse-by-pulse.

 Driver klystrons (SB), energy tuner klystron (KL), and sub-harmonic bunchers (SH) are managed

by the event system.





BPM

- DPO7104 can acquire data in 50Hz.
- Beam modes are recognized by events through network.
- Clients can monitor data of an interested beam mode.
- **◆100 BPMs are synchronized.**

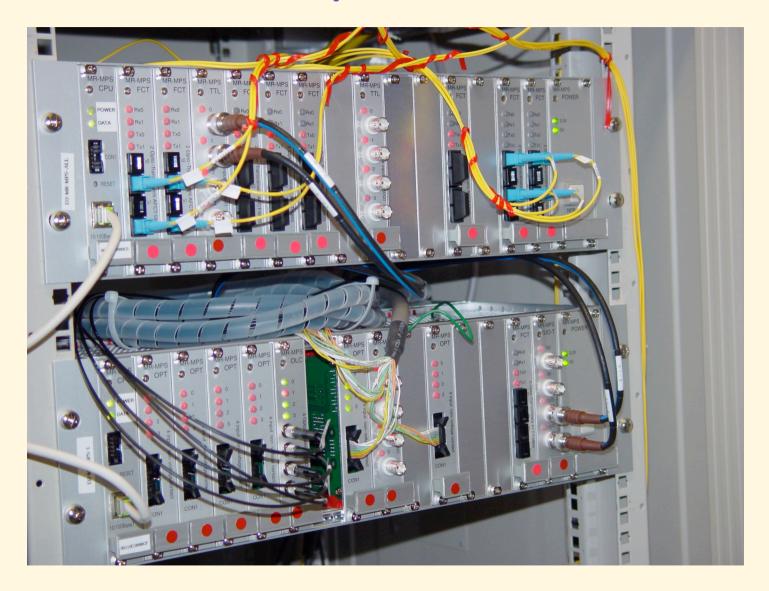
Parameters

- Parameters switching via Event system
 - ♦ RF Timing x~35
 - LLRF x~11
 - Gun voltages, fast delays, x4
 - ❖Pulsed magnets x~12
 - Injection system x~4
 - **❖BPM** over channel access x~100
- Basically sufficient for fast beam mode switching
- More parameters next year
- Integrity monitors
- Improved slow beam feedback, fast feedback, etc.

Embedded EPICS with FPGA

- ◆Suzaku/atmark-techno
 - ***FPGA Vertex-4**
 - **♦ PPC Linux-2.6**
 - **❖EPICS 3.14**

- **♦J-PARC MPS**
- KEKB Magnet
- **♦ Linac RF**



J-PARC MR MPS Operational

- Akiyama,Nakagawa,et al.
- SeveralDifferentInterfaces

Thank you

Thank you