RESEARCH ACTIVITY REPORT

Development of fast controls for beam wire scanner at SuperKEKB
Anindya Roy (VECC, DAE, India)
July 4, 2012

Objective:

The KEK 8-GeV LINAC injects electron ¢ and positron e beams with different characteristics
into four storage rings: KEKB high-energy ring (HER), KEKB low-energy ring (LER), Photon Factory
(PF) and PF-AR. The wire scanners are used to monitor beam profile non-destructively along the beam
line. Again a set of three wire scanners are used to calculate beam emittance and Twiss parameter for
optics matching in LINAC & BT. The principle objective is to develop an event based data acquisition
system, synchronised with LINAC timing system, for acquiring multiple beam mode data simultaneously.

Introduction:

In LINAC, a optics matching system consists of a set of four pulse motor based wire movement
mechanism, photo-multiplier tubes (PMT), high voltage power supplies and a data acquisition system. At
present, the data acquisition system is comprised of CAMAC based ADC, Scaler and DAC modules. A
supervisory EPICS I0C, VME based, is used to control wire movement, high voltage and also to acquire
data from CAMAC hardware. The configuration of the present system is described in details in the next
section. The main disadvantage of the system is that, the data acquisition process is not synchronized with
the LINAC timing system and hence unable to acquire multimode beam data simultaneously. Since
LINAC is used for simultaneous top-up injections to three rings, KEKB-HER, KEKB-LER, and PF,
therefore a data acquisition system, which utilizes timing events for data acquisition, will be useful for
acquiring multiple beam mode data simultaneously.

Wire scanner system:
A wire scanner system is used to measure the beam size non-destructively. It consists of a

tungsten wire of 100um diameter wound on frame to form X, Y and U wire perpendicular to beam. A
pulse motor drive system is used to move the frame into the beam pipe in a controlled manner. The
system is installed in such a way so that, the wires, X, Y and U, scan the beam in X, Y and U (45°)
direction while moving into the beam pipe. The schematic of the system is shown in Fig 1.

Potentiometer

" 0"‘ — Pulse Motor
S

Y-wire ——— ¢'Beam

\

L€ or ¥-ray

\

’(.. Scmallator

MT

Fig. 1: Schematic of wire scanner system
A photo multiplier tube (PMT) is used to collect the Bremsstruhlung radiation emitted due to
interaction of the beam with the wires. The output of the PMT is integrated using a charge integral type

ADC. A pulse motor controller with GPIB interface is used to drive the pulse motor and hence the wire
position. The position of the wire is measured by counting the pulse feedback from the pulse motor
controller. A potentiometer, with digital multimeter, is also used to measure the absolute position of the
wires independently. A variable output high voltage power supply provides the bias voltage of the PMT.
A data acquisition system consisting of ADC, Scaler and DAC is used to measure the output of PMT, the
wire position and to control PMT bias. Since in LINAC, the beam is injected in pulse mode, a timing
system is used to synchronize the data acquisition system with beam pulse time. A set of four wire-
scanners are used along the beam line for optics matching purpose.

Existing system:
The hardware architecture of the present wire scanner system is shown in Fig.2. In this system,

the beam gate signal, used for triggering ADC, is generated independently. The software architecture the
system is shown in Fig.3. An independent software thread is executed in the IOC to acquire data from
CAMAC hardware and store in a runtime ring buffer (event queue). The header of the buffer, comprising
of header length, size of the buffer and latest data position, is updated by the thread after storing a new
data into the buffer. A special EPICS record is used to read the buffer after completion of a scan. The
buffer is accessed by I0OC and the data storing thread using a semaphore. Since the system does not use
timing system events, hence three additional ADC channels are used to identify the beam mode from
acquired data. The buffer length is 2048 data and each data, an array of 16bit integers, is comprised of
following elements.

S-TH I S-11 I S-92H 1 S-21 I S-3H 1 S-31 I S-4H 1S-41 IB1 B2 IR3TATIAD | . | A-12

Where: S-1H & S-1L: Higher 16bit and Lower 16bit of Scaler channel — 1 data (32 bit)

Similar for Scaler channel 2 to 4.

B-1 to B-3: 12 bit BPM ADC channel -1 to 3 data

A-1 to A-12: 12 bit ADC channel 1 to 12 data, used for PMT signals and beam mode
identification.
The buffer header (32 elements) configuration is as follows.

0 |header size in bytes | O | each data size in bytes | O | buffer size |0 | latest data index | O |....... | O

At present, header size in bytes = 32 * 2 = 64, data size in bytes = 23 * 2 = 46 & buffer size = 2048

In the present system, at first the wire is moved from home position to final position i.e. inside beam line,
either at low, medium or high speed, depending on the beam mode and then back to the home position at
a high speed. After completion of the scan, the buffer is read and stored in 16 subarray (each contains 128
data array) record. The user panel (SAD) utilizes the data stored in the subarrays for its computation.

VME SYSTEM (EPICS 10C)
C| G CAMAC VME GATE
Pl P SERIAL CAMAC GENERATOR
ul l INTERFACE INTERFACE
B
A A
GATE Pulse
Control & data interface
VME interrupt on ADC LAM v CAMAC SYSTEM
c|s|{cC|D
< olc|s|a
\ 4 ¢ N|L|A|C
DIGITAL PULSE MOTOR L|R|D
MULTI-METER CONTROLLER R 2
A Control I— Control
signal Pulse feedback signal
STEPPER MOTOR l
Position (Voltage) DRIVER HIGH VOLTAGE
Feedback POWER SUPPLY
Power PMT
output output High
voltage
Potentio- PULSE MOTORS PMT
meter

BEAM SCANNER SYSTEM

Fig. 2: Hardware architecture of the present system (CAMAC based)

USER INTERFACE (SAD)

EPICS IOC

IT CONTROL THE PROCESS AND
ACQUIRE DATA FROM ALL
SIGNNAL SOURCES

IT READS THE WHOLE EVENT
QUEUE AT A TIME AND STORE
THE DATA AS A SPECIAL WAVE
FORM RECORD

IT SENDS THE DATA TO USER
INTERFACE USING CA PROTOCOL

VxWorks-5.5

CAMAC DAQ THREAD

e IT RUNS AS AN INDEPENDENT
APPLICATION

e IT CREATES EVENT QUEUE
MEMORY USING USER SPECIFIED
CONFIGURATION

¢ IT WRITES SCALER, BPM AND WS
ADC DATA, ON LAM INTERRUPT
OF ADC, AS ONE EVENT INTO
THE EVENT QUEUE

EVENT QUEUE (GLOBAL MEMORY)

EVENT -0

EVENT -1

EVENT - x

n X SCALER

m X BPM

p X WS

EVENT - N

Fig. 3: Software Architecture of the present system (CAMAC based)

Developed system:

The hardware architecture of the developed system is shown in Fig.4. The configuration of this

system differs from the existing system in the following respects.

Motorola MVMES5500 processor board is used.

It uses VME based CSADC, Scaler and DAC hardware.

It utilizes a VME based event receiver module (EVR-230RF) to synchronise the data
acquisition process with LINAC timing system.

A LAN/GPIB converter is used to communicate with Pulse motor controller (PMC) and
Digital Multimeter (DMM) for control and data acquisition.

An EPICS Base-3.14.12.1 based 10C, running on Vx-works 6.8, is used for control and
data acquisition.

The development process of this system may be divided into following phases.

Building EPICS Base-3.14.12.1 with compact subarray support for Vx-works 6.8.
Development of EPICS device driver for CSADC, Scaler and DAC hardware.

Building EPICS device driver for Micro Research Finland make EVR-230RF event
receiver with EPICS Base-3.14.12.1 and Vx-works 6.8 CR/CSR support.

Configuration of the Firmware of EVR-230RF and tuning of the hardware with LINAC
timing system.

Programming EVR-230RF to generate gate pulse for CSADC trigger at desired event
with appropriate delay and width through EPICS records.

Tuning of the gate pulse (i.e. delay & width) generated by EVR-230RF with different
LINAC beam modes.

Development of pulse motor control algorithm for moving the wire scanner at variable
speed (i.e. low & high speed modes) while scanning the beam.

Integration of the system to acquire wire position and beam data on desired event and
store in an array for analysis.

Development of user panel, using MEDM, for control and monitoring the data acquisition
process.

Testing of the system.

Among the above steps, few major steps are described in details below.

Development of EPICS device driver:

CSADC:

In the wire scanner system, the secondary radiation caused by the beam after interaction

with wire scanner is collected by PMT placed at judicially selected locations along the LINAC beam line.

The output of the PMT is integrated using, M/s. Hoshin make, 14 bit, 8 channel charge integral type
VMEO6U ADC board (V005). This hardware is compatible to 24/16 bit addressing with 0x3d/0x2d address
modifying code. The detail specification is given below.

1) Charge input: 0 to 1000 pc
i) Input impedance: 50 (negative signal)

iii) Gate width: 30 nsec to 1 usec
iv) Reset time: 400 nsec
v) Conversion time: 15 usec
vi) Conversion type: Successive approximation
vii) Remaining pedestal: 1190 (approx)
viii) Resolution: 14 bit
ix) Linearity: £0.03%
The address map of the board is as follows.
Read access (16 bit word type)
Channel-0: Base Address (2 byte)
Channel-1: Base Address + 0x02 (2 Byte)

Channel-7: Base Address + Ox1e (2 Byte)

The MSB (15™ bit) of each channel register is the LAM bit to signal the end of conversion.
Write access (16 bit word type)

Reset: The LSB (0™ bit) of channel 0 register is to be set to ‘1°.

Scaler: The position of the wire scanner is read by counting the pulse output from Pulse motor controller.
A 32 bit, Hoshin make, 150 MHz scaler/counter hardware (V004) is used for this purpose. This hardware
is compatible to 24/16 bit addressing with 0x3d/0x2d address modifying code. The register details of the
hardware are as follows.

Read access (16 bit word type)

Channel-0: Base Address (4 byte)

Channel-1: Base Address + 0x04 (4 Byte)

Channel-7: Base Address + Ox1c (4 Byte)

Write access (16 bit word type)

Start: Resetting lower byte at Base Adress + 0x02 (2 byte).
Stop: Resetting lower byte at Base Adress +0x04 (2 byte).
Reset: Resetting lower byte at Base Adress +0x0 8 (2 byte).

DAC: A high voltage power supply is used to control the bias voltage of PMT. The output of this power
supply is controlled by providing 0-10V DC at the analog input from the DAC board. A Prefort make 12
bit DAC hardware (PVME 323) is used for this purpose. This hardware is compatible to 24/16 bit
addressing with 0x3d/0x2d address modifying code. The technical specification of the hardware is as
follows.

i) Output range: 0 ~2.5V, 0~ 5.0V, 0~ 10.0V,£2.5V, £5.0V & £10.0V

ii) Resolution: 12 bit

iii) Conversion time: 10 usec

iv) Stability: £50ppm/C

v) Linearity: £0.013%
The register details of the hardware are as follows.

VME interrupt

GATE
pulse
VME $YSTEM|(EPICS 10C)
B4) 4
C|S|C|DJE
C|S|A
P
L|A|C]|]R
U R| D
AlQ A
Control LAN ‘
< ’ > Events
LAN/GPIB
EVENT
Gateway
¢ GENERATOR
DIGITAL STEPPER MOTOR
MULTI-METER CONTROLLER
A Control

Position (Voltage)

Control
. PuIse feedback
signal

STEPPER MOTOR
DRIVFR

signal

_

HIGH VOLTAGE

Feedback POWFR SUIPPIY
Power PMT
output output High
voltage
MAG. STEPPER MOTORS PMT
SCAIF

BEAM SCANNER SYSTEM

Fig. 4: Hardware architecture of the developed system

Write access (16 bit word type)

Channel-0: Base Address + 0x30 (2 byte)
Channel-1: Base Address + 0x32 (2 byte)

Channel-7: Base Address + 0x3e (2 byte)

EPICS Device driver: The EPICS device drivers, compatible to Vx-works 6.8, are developed for the
above hardware using EPICS Base-3.14.12.1 with CSA support. There are longin, bi, bo and waveform

record support for CSADC & Scaler hardware. The DAC hardware has only analog out (ao) record
support. 24 bit addressing mode is chosen for the hardware in device driver. The following functions are
provided for configuring the hardware during EPICS IOC initialization.
CSADC: devHoshinV005Config(int x, long y)
Scaler: devHoshinV004Config(int X, long y)
DAC: devPvme323Config(int X, long y)
Where x = Number of cards used

y = Starting Physical address (24 bit) of the hardware
A maximum number of 10 similar hardware, with physical addresses separated by a buffer of appropriate
size, can be configured by using the above functions.

Development of Micro Research Finland EVR-230RF support:

The Micro Research Finland (MRF) EVR-230RF event receiver board is used to integrate the
system with LINAC timing system. The detail specification and the user manual of the hardware are
available at the following link.

http://www.mrf.fi/index.php/vme-products/75-vme-event-receiver-rf-vme-evr-230rf

This hardware provides CR/CSR suport as specified in VME64x specification. The device support
module, available under “Hardware support: by Manufacturer->Micro Research Finland” in EPICS home
page, is used for VME based EVR-230RF module. EPICS devLib2 and MSI tool are the prerequisite for
building this module. Since the present version of EPICS does not support CR/CSR address space in
operating system independent manner. The devlib2 is the support modules, which enables operating
system independent bus address translation in EPICS. The source of this module and support tools are
listed below.

1) MRF EVR-230RF support module (mrfioc2-2.0.0.tar.gz):
http://sourceforge.net/projects/epics/files/mrfioc2/

ii) MRF EVR-230RF support module (mrfioc2-2.0.0.tar.gz) bug fix:
http://epics.hg.sourceforge.net’/hgweb/epics/mrfioc2/

1ii) EPICS devLib2 module (devlib2-2.2.tar.gz):
http://sourceforge.net/projects/epics/files/devlib2/

iv) EPICS MSI tool (msil-5.tar.gz):
http://www.aps.anl.gov/epics/extensions/msi/index.php

The devlib2-2.2 module and msil-5 extension are built by incorporating the EPICS base location
(EPICS_BASE) in the respective RELEASE files. The path of msi executable should be included in the

PATH environmental variable before building the mrfioc2-2.0.0 module. After expanding the mrfloc2-
2.0.0 module, the RELEASE file is modified to incorporate the following line.

DEVLIB2=<path>/devlib2-2.2
EPICS BASE=<path>/base-3.14.x

The module is built by issuing make command from top folder. After building, the content of the Top
folder is shown below.

drwxr-xr-x 4 r ani games 4096 May 23 17:04 bin
-TW-r--1-- 1 r ani games 110 Feb 15 14:26 Changelog
drwxr-xr-x 5 r ani games 4096 May 23 17:20 configure
drwxr-xr-x 2 r ani games 4096 May 23 17:06 db
drwxr-xr-x 2 r ani games 4096 May 23 17:06 dbd
drwxr-xr-x 3 r ani games 4096 Feb 1514:26 documentation
-TW-r--1-- 1 r ani games 47626 Feb 1514:26 Doxyfile
drwxr-xr-x 6 r ani games 4096 Feb 1514:26 evgMrmApp
drwxr-xr-x 4 r ani games 4096 Feb 15 14:26 evrApp
drwxr-xr-x 5 r ani games 4096 Feb 1514:26 evrMrmApp
-TW-r--1-- 1 r ani games 984 Feb 15 14:26 evrtg.txt
drwxr-xr-x 5 r ani games 4096 May 23 17:04 include
drwxr-xr-x 4 r ani games 4096 Mar 12 19:37 iocBoot
drwxr-xr-x 4 r ani games 4096 May 23 17:03 lib
-TW-r--1-- 1 r ani games 3543 Feb 1514:26 LICENSE
-TW-r--r-- 1 r ani games 968 Feb 15 14:26 Makefile
-TW-r--r-- 1 r ani games 40297 Feb 1514:26 make-log-mrfioc2-2-0-0.txt
drwxr-xr-x 3 r_ani games 4096 Feb 1514:26 mrfCommon
drwxr-xr-x 5 r_ani games 4096 Feb 1514:26 mrmShared
drwxr-xr-x 4 r_ani games 4096 Feb 15 14:26 mrmtestApp
-tw-r--1-- 1 r ani games 1335 Feb 1514:26 README
-tw-r--1-- 1 r ani games 317 Feb 15 14:26 TODO.evr
Tuning of EVR230RF:

Before using EVR-230RF, the reference clock of the module is to be synchronise with the
incoming events from event generator. For flexibility, a programmable reference clock is provided to
allow the use of the module in various applications with varying frequency requirements. The clock
reference for the event receiver is generated on-board using a fractional synthesizer. A Micrel SY87739L
Protocol Transparent Franctional-N synthesizer with a reference clock of 24 MHz is used for this purpose.
The detail procedure for calculating the configuration bit pattern of the franctional synthesizer is available
in the respective hardware datasheet (http://www.micrel.com/PDF/HBW/sy877391.pdf).

In the present case, LINAC timing system uses an event clock rate of 114.25 MHz. This clock

frequency is obtained from the synthesizer’s reference clock, 24 MHz, by using the following formula.
Event rate (MHz) = [(M/N)*[P - (Q-1y/(Qp + Q-1y)] * Fref |/PostDivSel
Where,
Fref=24.0 MHz
PostDivSel = 6
M =14, N = 14, therefore M/N = 1
P = Mod[(Event rate X postDivSel)/Fref] =29

Qp-n =14
Qp =32~ Q= 18, a5 Qy + Q) = 32
The corresponding configuration bit pattern (word) is
0000-Q,(5)-Qp-1)(5)-P(4)-000-PostDivSel(5)-N(3)-M(3)
as per datasheet. Hence by substituting the values of PostDivSel, M, N, P, Q, & Q1) from the datasheet,
ie. Q,=10010, Q¢.1y = 01110, P = 1100, PostDivSel = 00110, M = 101, N = 101, the final configuration
word for 114.25 MHz is
093B01AD (0000-10010-01110-1100-000-00110-101-101).
This configuration word is stored into EVR-230RF non-volatile memory using the 10baseT network
interface of the module in the following procedure.

1) Telnet to the IP assigned to EVR-230RF and issue following commands from telnet
prompt

i) Use command ‘b’ to see/change the synthesizer configuration word, boot parameters, IP
address, DHCP setting etc. of the module

iii) Change the configuration word

iv) Use command ‘s’ to save the values in memory

v) Use command ‘r’ to reset the board to effect the changed parameter values

vi) Connect the optical fiber from event generator into EVR-230RF front panel

vii) Telnet to EVR-230RF and issue following commands from telnet prompt

viii) Use command ’t’ to tune delay line

ix) Use command ‘s’ to save the new delay line value into memory

VME-EVR-230RF -> t J

Starting tuning...

Adjusted sampling phase to 75
Initial DCM phase -85

Fine tuned sampling phase to 78
Final DCM phase -73.
VME-EVR-230RF ->

Fig 4: Telnet prompt after issuing tuning command
Programming of EVR230RF:

The detail description of the EPICS device support module for EVR-230RF is available at the
following link.

https://pubweb.bnl.gov/~mdavidsaver/files/evr-usage-r4.pdf
EVR-230RF module is configured while IOC initialization using the following function
mrmEvrSetupVME("EVR1", 6, 0x08000000, 5, 0x20)
Where EVRI1 = object name used to link the module with EPICS records
6 = VME slot number
0x8000000 = System address for mapping
5 = interrupt level
0x20 = interrupt vector
The EPICS records, used to configure the EVR-230RF module, are described in details below. In these
records, the EVR-230F module is identified by the object name (e.g. @OBJ = EVR1) provided for

parameter @OBJ in the records’ INP/OUT property. Every record is associated with a specific device

type and PROP field value depending upon the property to be controlled or monitored. There are four sets

of records for configuration of EVR-230RF module, pulse-generator, front panel output and EPICS event

generation.

Records for configuring of EVR-230RF module:

The object name is “EVR1” and the device type is either of “Obj Prop bool” (bo & bi records), “Obj Prop
double” (a0 & ai records) and “Obj Prop unit32” (longout & longin records).

To enable EVR-230

record(bo, "EVR1:Ena-Sel") {
field(DTYP, "Obj Prop bool")
field(OUT , "@OBJ=EVR1, PROP=Enable")
field(DESC, "Master enable for EVR device")
field MASK, "1")
field(VAL, "1")
field(ZNAM, "Disabled")
field(ONAM, "Enabled")
field(PINT, "YES")

}

Set Clock frequency to 114.25 MHz
record(ao,"EVR1:CIk-SP")
{
field(DTYP, "Obj Prop double")
field(OUT, "@OBJ=EVR1, PROP=Clock")
field(VAL, "114.25")
field(LINR, "LINEAR")
field(ESLO, "le-6")

}

Set timestamp source — 0 i.e. event clock
record(longout, "EVR1:TimeStamp-Src")
{

field(DTYP, "Obj Prop uint32")

field(OUT , "@OBJ=EVRI,
PROP=Timestamp Source")

field(VAL, "0")

}

Set timestamp clock prescaler

record(ao, "EVR1:Time:Clock-SP") {
field(DTYP, "Obj Prop double")
field(OUT , "@OBJ=EVRI,

PROP=Timestamp Clock")

Readback PLL status

record(bi,"EVR1:PLL-Sts")

{
field(DTYP, "Obj Prop bool")

field(INP,"@OBJ=EVR1, PROP=PLL Lock Status")

field(SCAN, ".1 second")
field(ZNAM, "Fail")

field(DESC, "Timestamp tick rate")
field(VAL, "1.0")

field(EGU , "MHz")

field(LINR, "LINEAR")
field(ESLO, "le-6")

field(HOPR, "150™)

field(LOPR, "0")

field(DRVH, "150")

field(DRVL, "0")

field(PREC, "3")

}

Readback clock frequency
record(ai,"EVR1:Clk")
{
field(DTYP, "Obj Prop double")
field(INP, "@OBJ=EVR1, PROP=Clock")
field(EGU , "MHz")
field(LINR, "LINEAR")
field(ESLO, "le-6")
field(PREC, "3")
}
Set on Heartbit failure (detection)
record(longin, "EVR1:HB:Timeout") {
field(DTYP, "Obj Prop uint32")
field(INP , "@OBJ=EVR1, PROP=HB
Timeout Count")
field(SCAN, "I/O Intr")
field(DESC, "# of heartbeat timeout")

}

field(ONAM, "OK")
}

Readback Link status
record(bi, "EVR1:Link-Sts")
{
field(DTYP,"Obj Prop bool")
field(INP, "@OBJ=EVR1, PROP=Link Status")
field(SCAN, ".1 second")
field(ZNAM, "Fail")
field(ONAM, "OK")

}

Record for mapping front panel output with pulse-generator:
The object name is “EVR1:FrontOut0” for Front panel output — 0 and device type is “Obj Prop unit32”
(longout record).
record(longout, "EVR1:FP0:Src-SP") {
field(DTYP, "Obj Prop uint32")
field(DESC, "OUTO (TTL)")
field(OUT , "@OBJ=EVR1:FrontOut0, PROP=Map")
field(FLNK, "EVR1:FP0:Src-RB")
field(PINT, "YES")
field(VAL, "0") // 0 for pulse-generator 0

}

Records for configuring pulse-generator:
The object name is “EVR1:Pul0” for Pulser 0 and device type is either of “Obj Prop bool” (bo & bi
records), “Obj Prop double” (ao & ai records) and “Obj Prop unit32” (longout & longin records).
Enable pulse generator 0
record(bo, "EVR1:DlyGen0:Ena-Sel") {

field(DTYP, "Obj Prop bool")

field(OUT , "@OBJ=EVR1:Pul0, PROP=Enable")

field(PINT, "YES")

field(VAL , "1")

field MASK, "1")

field(ZNAM, "Disabled")

field(ONAM, "Enabled")

}

Set polarity Active Low (val = 1)
record(bo, "EVR1:DlyGen0:Polarity-Sel") {
field(DTYP, "Obj Prop bool")
field(OUT , "@OBJ=EVR1:Pul0, PROP=Polarity")
field(PINT, "YES")
field(VAL , "1")
field MASK, "1")
field(ZNAM, "Active High")
field(ONAM, "Active Low")

Set Delay (val = 40usec)

record(ao, "EVR1:DlyGen0:Delay-SP") {
field(DTYP, "Obj Prop double")
field(OUT , "@OBJ=EVR1:Pul0, PROP=Delay")
field(PINT, "YES")
field(DESC, "Pulse Generator 0")
field(VAL , "40")
field(EGU , "us")
field(LINR, "LINEAR")
field(ESLO, "le6")
field(PREC, "3")
field(FLNK, "EVR1:DlyGen0:Delay-RB")

}

Readback delay setting in usec
record(ai, "EVR1:DlyGen0:Delay-RB") {
field(DTYP, "Obj Prop double")
field(INP , "@OBJ=EVR 1:Pul0, PROP=Delay")
field(VAL , "0")
field(EGU , "us")
field(LINR, "LINEAR")
field(ESLO, "le6")
field(PREC, "3")
field(FLNK, "EVR1:DlyGen0:Delay:Raw-RB")

}

Readback delay setting in count (raw)
record(longin, "EVR1:DlyGen0:Delay:Raw-RB") {
field(DTYP, "Obj Prop uint32")
field(INP , "@OBJ=EVR1:Pul0, PROP=Delay")
field(EGU , "cnts")
field(HOPR, "Oxffffff")
field(LOPR, "0")
field(HIGH, "Oxffffft")
field(HSV, "MAJOR")

}

Set pulse width (100 nsec)

record(ao, "EVR1:DlyGen0: Width-SP") {
field(DTYP, "Obj Prop double")
field(OUT , "@OBJ=EVR1:Pul0, PROP=Width")
field(PINIL, "YES")
field(DESC, "Pulser pulse width")
field(VAL , "100")
field(EGU , "ns"
field(LINR, "LINEAR")
field(ESLO, "1e9")
field(PREC, "3")
field(FLNK, "EVR1:DlyGen0:Width-RB")

Readback pulse width in nsec
record(ai, "EVR1:DlyGen0:Width-RB") {
field(DTYP, "Obj Prop double")
field(INP , "@OBJ=EVR1:Pul0, PROP=Width")
field(VAL , "0")
field(EGU , "ns")
field(LINR, "LINEAR")
field(ESLO, "1e9")
field(PREC, "3")
field(FLNK, "EVR1:DlyGen0:Width:Raw-RB")

}

Readback pulse width in count (raw)
record(longin, "EVR1:DlyGen0:Width:Raw-RB") {
field(DTYP, "Obj Prop uint32")
field(INP , "@OBJ=EVR1:Pul0, PROP=Width")
field(PINT, "YES")
field(HOPR, "Oxffff")
field(LOPR, "0")
field(HIGH, "Oxffff")
field(HSV, "MAJOR")

}

Set Prescaler value (val = 1)
record(longout, "EVR1:DlyGen0:Prescaler-SP") {
field(DTYP, "Obj Prop uint32")
field(OUT , "@OBJ=EVR1:Pul0, PROP=Prescaler")
field(DESC, "Pulser prescaler")
field(PINL, "YES")
field(HOPR, "0xff")
field(LOPR, "1")
field(DRVH, "0xff")
field(DRVL, "1")
field(VAL , "1")
field(FLNK, "EVR1:DlyGenO:Prescaler-RB")
field(DISP, "0")
field(DISA, "0")

}

Readback Prescaler setting
record(longin, "EVR1:DlyGen0:Prescaler-RB") {
field(DTYP, "Obj Prop uint32")
field(INP , "@OBJ=EVR1:Pul0, PROP=Prescaler")
field(HOPR, "0xft")
field(LOPR, "1")
field(HIGH, "0xff")
field(HSV, "MAJOR")
field(FLNK, "EVR1:DlyGen0O:Res-1")

Record for mapping timing event to pulse-generator:
The following record is used to map an event (val = 51) to a pulse-generator (@OBJ=EVR1:Pul0,
Func=8$(F=Trig)). The corresponding device type is “EVR Pulser Mapping”.
Mapping pulser-0 to a event code e.g. 51
record(longout, "LIIEV:KEKB:Pul0:Evt") {

field(DTYP, "EVR Pulser Mapping")

field(OUT , "@OBJ=EVRI1:Pul0, Func=$(F=Trig)")

field(PINI, "YES")

field(DESC, "Mapping for Pulser 0")

field(VAL, "51")

field(LOPR, "0")

field(HOPR, "255")

field(DRVL, "0")

field(DRVH, "255")

}
Record for mapping timing event to EPICS event:

The following record is used to generate an EPICS event (val=30) from the incoming event (code = 31) to
EVR-230RF. Here the device type is “EVR Event”.
record(longout, "EVR1:event:31") {

field(DTYP, "EVR Event")

field(SCAN, "I/O Intr")

field(OUT , "@OBJ=EVR1,Code=31")

field(VAL , "30")

field(TSE , "-2")

}

Pulse motor control:

The movement of the wire scanner is controlled from a GPIB based 4 channel pulse motor
controller. A LAN/GPIB converter is used to communicate with the pulse motor controller. The pulse
feedback output of the controller is used for monitoring the wire position through scaler. During scanning,
the wire scanner interacts with beam at three distinct regions of the total span of movement. Hence it is
wise to control the speed of the wire such that the wire should move slowly in the region of beam
interaction to get more valid data and fast in other region to minimize scanning time. To achieve this, the
total span of movement of the wire scanner is divided into seven zones. The fig below shows the various
regions with associated speed of movement.

Fig. 5: Schematic showing peak position and various scanning zones

The direction of movement is also divided into three types e.g. forward (2), backward (3) and from any
position to home (1). The last direction is useful when the wire scanner is kept in between position due to
some manual operation. In the present system, the pulse motors are driven in ABSOLUTE SCAN mode
to prevent overdrive beyond the final position of the wire scanner i.e. SPAN. There are two hardware
limit switches at the two end of wire scanner drive to stop the pulse motor. The status of these limit
switches are also monitored from the supervisory interface.

To move the wire scanner in multi-speed mode, an auto scan algorithm is implemented in the
present system. The flow chart of the algorithm is shown in Fig 6. The limit switch statuses are also
included in the auto scan method to stop wire movement on activating a limit switch.

START
(ALITO SCAN=1)

WAIT FOR 100 msec
(DELAY)

SET REMOTE MODE
(RFM-CMD=1)

START MOVING
(START)

SET LOW SPEED
(LSPD_WT=7, 200pps)

READ POSITION
(POSN)

SET MED SPEED
LSPD_WT=21, 1000pps

POSN_CALC

CHECK STATUS YES
(BUSY FLAG = 1)

SET HIGH SPEED
LSPD_WT=41, 3000pps

SET DIRECTION*
(DIR_FLAG=1/2/3)

SET ZONE*
(ZONE_FLAG=0/1/2/3/4/5/6/7)

DIR FLAG # 3 (BACKWARD)

i POSN = DISTANCE (START.VAL)

__

SET SPEED*
(SPEED=HI/LOW)

SET DISTANCE*
(START.VAL)

Fig. 6: Flow chart of Pulse motor control algorithm (*Steps are described in detail in next section)

Details description of various steps of Pulse motor control algorithm:

SET DIRECTION (DIR_FLAG): SET DISTANCE (START SEL & AUTO CALC):
IF POSITION = 0 (I.E. HOME) SWITCH (ZONE_FLAG)
DIR_FLAG = 2 (FORWARD) CASE 0: START = 0 (HOME)
ELSE IF CASE 1: START = PEAK1_START
IF ZONE_FLAG =7 CASE 2: START = PEAK1_END
DIR_FLAG = 3 (BACKWARD) CASE 3: START = PEAK2_START
ELSE CASE 4: START = PEAK2_END
DIR_FLAG = 2 (FORWARD) CASE 5: START = PEAK3_START
ELSE CASE 6: START = PEAK3_END
DIR_FLAG = 1 (GOTO HOME) CASE 7: START = SPAN

SET SPEED (SPEED FLAG):
IF DIR_FLAG = 2 (FORWARD)
IFZONE_FLAG =0, 1,3,5,7

SPEED_FLAG = 2 (HIGH SPEED) SET ZONE (ZONE_FLAG):
ELSE IF ZONE_FLAG =2, 4,6 IF DIR_FLAG =2 & ZONE_FLAG < 7
SPEED_FLAG =0 (LOW SPEED) ZONE_FLAG = ZONE_FLAG + 1
ELSE IF DIR_FLAG = 3, 1 (BACKWARD) ELSE
SPEED_FLAG = 2 (HIGH SPEED) ZONE_FLAG =0

Wire-scanner record (WS):
An application specific EPICS record, WS (Wire Scanner), is developed to meet the data format

requirement of the SAD based wire-scanner control and analysis user interface software. This record may
be considered as a waveform record with multiple input-links, e.g. calc record, with some additional
parameters. The main purpose of this record is to append the values retrieved from its input-links in a
circular buffer depending upon its other configuration parameter on every scan. The fields in this record
fall into these categories:

a) scan parameters

b) read parameters
¢) configuration parameters

Scan parameter: The WS record has the standard fields for specifying under what circumstances the
record will be processed. These fields are listed in EPICS Record Reference Manual (Scan Fields,
Chapter 2, 2). In addition, EPICS Record Reference Manual (Scanning Specification, Chapter 1, 1),
explains how these fields are used. Since the WS record supports no direct interfaces to hardware, it
cannot be scanned on I/O interrupt, so its SCAN field cannot be I/O Intr.

Read parameter: The record consists of 52 input-links INPA, INPB,. . . INPZ, INPAA....INPAZ. These
fields can be database links, channel access links or constants. If they are links, they must specify another

record's field or a channel access link. If they are constants, they will be initialized with the value they are

configured with and can be changed via dbPuts. They cannot be hardware addresses. See EPICS Record
Reference Manual (Address Specification, Chapter 1, 2), for information on how to specify database links.

’Field H Summary H Type "DCTHInitial"Access”Modify"Rec Proc Monitor’
IINPA |lnput Link A |INLINK|[Yes [0 [No |No |N/A |
IINPB |[Input Link B [INLINK][Yes [0 |[No [No |N/A |
IINPC |lInput Link C |INLINK|[Yes [0 [No |No |N/A |
IINPD |lInput Link D |INLINK||Yes [0 [No [No |N/A |
IINPE |Input Link E [INLINK][Yes [0 |[No [No |N/A |
IINPF |lnput Link F INLINK||[Yes [0 [No |No |N/A |
IINPG |llnput Link G |INLINK|[Yes [0 [No |No |N/A |
IINPH |[Input Link H [INLINK][Yes [0 |[No |No |N/A |
|
|
|
|
|
|
|

INPI|[Input Link I [INLINK][Yes [0 |No |No |N/A
IINPJ |linput Link J |INLINK||[Yes [0 [No |No |N/A
L. e T
INPZ |[Input Link Z [INLINK][Yes [0 |No |No |N/A
INPAA|[Input Link AA[INLINK|[Yes [0 |No [No |N/A

R . . .

INPAZ [Input Link AZ|INLINK][Yes [0 |No |No |N/A

Configuration parameter: The record has following configuration parameters for calibration of scaler

data using BPM data, delay to process the record and setting data format. The record always considers the
first NSCLR number of input-links from (INPA) as scaler channel and stores each scaler data as two 16
bit integer (MSB then LSB). The next 3 x NBPM input-links are considered as BPM ADC data. For each
BPM, these data are stored as three 16 bit interger. Then the next NWS input-links are considered as wire
scanner ADC data and each ADC data is stored as one 16 bit integer. The event number (NEVNT) is then
appended to the above data as one 16 bit integer.

Field Summary Type |[DCT||/Initial||Access||Modify l;/f(cml::::
’NSCLR HNumber of scaler channel HSHORT HYes HO HNO HNO HN/A

Number of BPM data to be stored. Every
NBPM |BPM data is a set of three or four elements ||[SHORT |[[Yes |0 No No N/A
depending on CLBF flagis 1 or 0.

’NWS HNumber of ADC data to be stored HSHORT HYes HO HNO HNO HN/A ’
’NEVNTHEvent number to be append HSHORT HYes HO HNO HNO HN/A ’

Calibration flag, if 1, then BPM ADC data
will be used to calibrate the wire scanner
scaler data

CLBF [|If 0, then raw scaler data will be inserted |[SHORT |[Yes ||0 No No N/A
into the array

Note: calibration of scaler data is not yet
implemented

DLY

Delay value in millisecond. The record
will be processed after this value during
every scan. This is to ensure the
completion of ADC data conversion.

DOUBLE]||Yes ||0 Yes

Yes

N/A

RARM

Rearm flag. If 1, then the buffer will be re-
initialised and NORD will be set to 0 on SHORT |[Yes ||0 Yes
next scan process.

Yes

NELM

Number of data set consisting of scaler,
BPM, wire scanner and event number, to
be stored. Hence the size of the buffer will [[ULONG |Yes ||0 No
be

2*NSCLR + 3*NBPM + NWS + 1

N/A

’FTVL HData type, always to be “SHORT” HMENU HYes ’

[No

[«

[No

IN/A

An example configuration of the above record is shown below.

record(ws, "$(user)BTiIWSBPM:L61:DATAW")
{

field(CNF, "/users/r_ani/epics/epics312vw67/modules/W S/calibdata/btarwb-1-

04.cal")
scaler - 4
Beam gate pulse signal
field(INPA, "$(user)BTiWSBPM:L61:SCALER:ch0.VAL PP")
Pulse motor controller signal
field(INPB, "$(user)BTiWSBPM:L61:SCALER:ch1.VAL PP")
field(INPC, "$(user)BTiWSBPM:L61:SCALER:ch2. VAL PP")
field(INPD, "$(user)BTiWSBPM:L61:SCALER:ch3.VAL PP")
#BPM -1 (3 ch)
field(INPE, "$(user):L61:SP_48 4 1:X:PFE.VAL PP")
field(INPF, "$(user):L61:SP_48 4 1:Y:PFE.VAL PP ")
field(INPG, "$(user):L61:SP_48 4 1:I:PFE.VAL PP ")
WS -4
field(INPH, "$(user)BTiWSBPM:L61:ADC:ch0.VAL PP")
field(INPT, "$(user)BTiWSBPM:L61:ADC:ch1.VAL PP")
field(INPJ, "$(user)BTiWSBPM:L61:ADC:ch2.VAL PP")
field(INPK, "$(user)BTiWSBPM:L61:ADC:ch3.VAL PP")
field(INPL, "$(user)BTiWSBPM:L61:ADC:ch4. VAL PP")
field(INPM, "$(user)BTiWSBPM:L61:ADC:ch5.VAL PP")
#PMT C & D
field(INPN, "$(user)BTiWSBPM:L61:ADC:ch6.VAL PP ")
field(INPO, "$(user)BTiWSBPM:L61:ADC:ch7.VAL PP")
field(INPP, "0")
field(INPQ, "0")
field(INPR, "0")
field(INPS, "0")
field(NSCLR, "4")
field(NBPM, "1")
field NWS, "12")
field NEVNT, "0")

field(NELM,"2048")

fieldFTVL, "SHORT")

field(SCAN, "Passive")

field(EVNT, "0")

field(PINT, "NO")

msec delay before reading

field(DLY, "0.002")

BPM calibration disabled

field(CLBF, "1")

field(FLNK, "$(user)BTiWSBPM:L61:DATAWE")

}

The header configuration of the new WS record is as shown below, where index is the element position of
in the header array.

Index | Description
0 Total number of header elements or header
size = 32
2 Size of the header in bytes = 64
4 Size of each event data in bytes = 48
6 Size of buffer = 2048 (number of event)
8 Pointer to latest data
10 Number of scaler
12 Number of BPM
14 Number of WS ADC

Software architecture:

This section describes the processing various records on events and the linkage among various
records.

Event seauence

[}

i

[}

L

[}

|

[}

|

' DOL NPP NMS DOL

[}

! FLNK . FLNK
[}

| SLNK a0 VAL SLNK | |ongout VAL
[}

[}

! out | OUT__ @0BJ=EVR1:Pul0, PROP=Delay
| sDIS e SDIS ~

[}

[}

' Gate-Delay DlyGenO:Delay-SP

[}

: SCAN:Event SCAN: Passive

[}

[}

: DOL NPP NMS DOL

i FLNK ~, _FLNK
[}

' SLNK VAL
: SLNK a0 VAL longout

[}

! out | OUT_ @OBJ=EVR1:Pul0, Func=$(F=Trig)
! SDIS ~ SDIS e

[}

[}

' Gate-Pulse KEKB:PulO:Evt

i SCAN: Event SCAN: Passive

[}

|

bommeee @ LIiEV:KEKB:PF

[}

i

I

V time

Fig. 7: Record linkage diagram — 1 (PF event is taken as example, n = 51)

NPP NMS

NPP NMS (BTiIWS:L55_ADIR_FLAG) INPA
calcout
NPA INPB ouT I INPA ﬁcalc
BTiWS:L5_A'START_FO
FLNK SCAN: Passive BTIWSBPM.L61: VAL
SLNK DATA_READ
— SCAN: Passive FLNK

calcout
VAL
SLNK

SLNK
— | LIEV:KEKB:PF
SCAN: Event(52) OCAL

SDIS

SLNK ~~
NEVNT FLNK
SELL

bo

FLNK

longin
INP|scatericno
(#C0 S0 @) | SCAN: Passive INPA
fanout FLNK
ADC:reset
LNK1 SLNK SCAN: Passive

INPB
BTIWSBPM:L61:DATAWF

ws
SCAN: Passive LNK2

longin

INP|scaericnt
(#C0 81 @) | SCAN: Passive

BTIWSBPM:L61:DATAW
SCAN: Passive VAL
SLNK Rt
compactSA

FLNK

longin
INP
——— | SCALER:ch2
(#C0 S2 @) | scaN: Passive
BTiIWSBPM:L61:DATAWH
INP SCAN: Passive

longin

INPO
_~
SLNK compactSA

INPP
BTIWSBPML61:
DATAW_00
SCAN: Passive

INP
— | SCALERch3

SCAN: Passive
FLNK

longin

INP
(#C0S0 @)

ADC:ch0
SCAN: Passive

compactSA

longin
NP ADC:ch1 BTiWSBPM:L61
cos1@ | -C! I | N
(#COS1@) | scan: Passive DATAW, 01
INP SCAN: Passive
longin —_—
INP ;
(#CoS2 @) | ADC:ch2 E
SCAN: Passive
longin
INP SLNK SA
(#C0 3 @)| ADC:ch3 compact
SCAN: Passive BTIWSBPM:L61:
DATAW_15
INP SCAN: Passive
longin
INP
#C0 S4 ADC:ch4
{ @ SCAN: Passive
bo "~ FLNK
longin
INP ¢ SLNK | scaLERreset ouT
(#C0 S5 @)| ADC:chS SCAN: Passive
SCAN: Passive
longin
INP
#C0S6 @) | ADCiché
SCAN: Passive
longin
NP ADC:ch7
Ipap— -Cl
@cos7@ SCAN: Passive PP NMS

Fig. 8: Record linkage diagram — 2 (PF event is taken as example, n = 51)

User interface:

The user interface is built using MEDM. This user interface is provided for monitoring various
parameters of the system. A number of important parameters e.g. peak positions, widths around peaks,
high speed and low speed value, selection of beam modes etc can be set using this interface. It also plots
the ADC values against wire position while scanning. Hence this interface is useful during testing of the

system.

.
X BTL61_ WS_OPLadl

POSITION PEAK 1 WIDTH 1 PEAK WIDTH 2
WIRE A 0,00

WIRE B 0,00

WIRE C 0,00

WIRE D 0,00

SCALER DATA

0
0
0
0
: 0
0
0
0

Mo

ADC (count)

1400

1200

1000

800:

600

400

200

o

WcH-2

| [E]

CANCEL CANCEL

BEAM PROFILE

200
1]

-
5000

10000
Position {counts)

1
15000

o
20000

1
25000

Test result:

@1 File Edit Control Window

061202012 16:47:36 Help ~

~Wire A Wire C
ChiSquare = 1.230E7 Goodness = 48246 ChiSquare = 8638553 Goodness =
sigmal = 825215&/—/ 1314lgma 4718877+/- 099%Igma3 = 65%41%";/ 275%110 slsgmapl‘—1 TI714.+1, 2968bma 21139597+/./ 1208 m?‘s—14871 5t 14525
I 2 1+/-' 46 751 é’a»f/'lf e+/.'§% ge%s %%7%?% s% +/-' 3
i $§8 g Bl é?gﬁ =adletd+ e i I A T G bl
=~ T . T :N;sooo R ™9
i 8000F - = 3 . $ |]
g b | g 6000} “ L 4
<6000f- 4 - = $ f | 1
£ : 2 4000 | | !]
S 4000f i * = S) % & it]
S : o 1 ¢ ‘ H |]
82000_— E 82000_ 11 1 ! } 3
[¢ ¢ $3 3]
2 0'_01 DJL*J ‘l *s] 2 o e .-IL.Id B—ol—o—odlb—o—o—alo_'
o 80 100 0 20 40 60 80 100
ere Posmon Imml Wire Position Imml
File: [\WS2012_6_20_16_3 3.datA | File \ Pref \ ReFit | 399.8046875 V 4181 | File: \WS2012_6_20_16_35_22.datC File \ Pref \ ReFit | 899.560546875 V 3827
Wire B Wire D

ChiSquare =3.514E7 Goodness

P

27212 +l— 21$ma3 213510 +/- 34920

& 10000F T

< [

o 8000F e E
= 6000: !

o

S 4000F

S : T*

O 2000k | :

a 3 s

< o 1

1
i
. J;'.f_

T f

0 20 40

60 80 100

Wire Position Imm1

File: \WS2012_6_20_16_39_3.datB File Pref ReFit |599.70703126 V 3478 File: \\/S2012_6_20_16_36_53.datD File Pref ReFit |699.668203126 V 3508

Select Matching zone on localhost:14.0

B File Edit Window

| Wire Scan Optics Calculate | Matching | Test

ChlSquare’1 180E7 Goodness = 48261

i 3 1:?"] 8%30+i—/ B4 25K maZ2 22175428+-{-7 Sg?ﬂ ma3 = 517%0;—/;_/ 0564%%0
: ; , :
8! 1+/ 1 6% §
o ;5? AL i, Pty
T

ol

@
m

& 10000f- ! ! . 4
~~ 1
B so00f- 4 4
= \ 1
"o 6000F .
2

<]
3 4000k g 4
0 »?'» x !]
%) 2000 * :o -
2 O_I.._..o LL"-...du-..—tf;

0 20 40 60 80 100
Wire Position Immi1

B

06/20/2012 17:44:27 Help +

X phase space at Wire A X phase space at Matching Point Results of M |
| B, @BP581 [m] : 81.642 p, @BP581 [m] : 5228
| o, @BP581 : 1.273 o, @BP581 : 1.274
T —— | eIl [5.0310E-8 <, ImI : 2 0080E-8
=02 —_ | Ag, [m]: 4 4455E-8 Ae, Iml : 8.9849E-9
e s A |ve. lnmm.mradi : [246 137 ve, ln.mm.mrad] : 98.240
£ o1 £ | Ave, I.mm.mrad] : 217.493 Aye, nmm.mrad] : 43 958
E ; (1) E 1 | Goodness x : ‘ .077 Goodnessy : [2.1899E-5
< 3] |Bmagx: 3.051 Bmagy : 2437 |
Rtk = «Bmag x : 15351E-7 Bmagy : 4 8938E-8
-03 »|1 _015 [l) 0?5 1' 3 (Is | yeBmag x : 751.029 y:Bmagy : 239.423
| Optics Plot

X[mm]

Y phase space at Wire A

X[mm]

Y phase space at Matching Point

03
§'0.2
= 01
£
N
;‘:--O.'I
o.-0.2F-
-03F
Y[mm] 5
e i e SRR 2Z TR ARG §°8
. 7 9% +- 57468 34 as
, EiiEI e
me I8 4 925 ' Wire Selecti
E 4t 3 £ 1% 3-wire:ABC 3-wire:ABD 3-wire:ACD 3-wire:BCD
& ol E I i & 8-wire:ABCL
| e N T A T 084 v NonLinearFit v Ini.Value(SVD)
Function = ((p 1533601 (R1.01.8. 1140 7347317580285, 16H041388 | Function = (@3&4631(@ 0)81))(305_&95253554030% wﬂmms [Errlmeas),nc n: |0 | Erropt) (%): 0

Calculate Optics Save All Parameters ‘

Qmag values were SAVEd to /ldatal KEKB/Wire/LINAC/sector5/PF/data/Qvalue/lgname_2012_6_20_17_42_11.dat0 E]

Location of Various source codes:
Server: abco4.kek.jp
User: r_ani (aicg123)
Wire scanner IOC: /users/r_ani/epics/epics3121vw68/modules/ws mrfioc2
User interface: /users/r _ani/epics/epics3121vw68/modules/display/BTL61 WS OPIlL.adl

List of IOC source files:
Directory: ws_mrfioc2/wsApp/src

devHoshinV004.c
devHoshinV005.c
devPvme323.c
devWsRecordBpm.c
devWsRecord.dbd
devXxHP4970AWS.c
devXxHP4970AWS.dbd
devXxHP4970AWS.gt
devXxHP4970AWS.list
devXxPM4CGpib.c
devXxPM4CGpib.dbd
devXxPM4CGpib.gt
devXxPM4CGpib.list
hoshinV004.dbd
hoshinV005.dbd
Makefile
pvme323.dbd
timeDelayRecord.c
timeDelayRecord.dbd
wsAppMain.cpp
wsRecordBpm.c
wsRecord.dbd

Directory: ws_mrfioc2/iocBoot/iocwsApp
cdCommands
Makefile
st.cmd

Directory: ws_mrfioc2/wsdb
BTL61wsdata_csa_bpm.db
BTL61wsdata_csa Sbpm.db
BTL61hv.db
BTL61wsmove A wire.db
BTL61wsmove B wire.db
BTL61wsmove C wire.db
BTL61wsmove D wire.db
BTL61wsmove HP4970AWS.db
BTL61wsmove newpmc.db
evr-kekb-config.db
evr-kekb-events.db
evr-kekb-events-enable.db
evr-kekb-pulsermap.db
hoshinV004.db
hoshinV005.db

List of important records: (Note: “R:” is added to distinguish from existing records. “R:” should be removed for final installation.)

Pulse motor control & monitoring

sl No Record Name ’ Access Initial Value ’ Unit ’ Scan Purpose db FileName

Wire A drive system

1 R:BTiWS:L5_A:SPAN Write 100.00 mm Passive Setting span

2 R:BTiWS:L5_A:PEAK1 Write 20.25 mm Passive Setting wirel peak position

3 R:BTiWS:L5_A:WIDTH1 Write 16.00 mm Passive Setting wirel width around peak

4 R:BTiWS:L5_A:PEAK2 Write 46.75 mm Passive Setting wire2 peak position

5 R:BTiWS:L5_A:WIDTH2 Write 14.00 mm Passive Setting wire2 width around peak

6 R:BTiWS:L5_A:PEAK3 Write 77.58 mm Passive Setting wire3 peak position

7 R:BTiWS:L5_A:WIDTH3 Write 12.00 mm Passive Setting wire3 width around peak

8 R:BTiWS:L5_A:LSPD_WT Write 7.00 count Passive Setting low speed value BTL61wsmove_A_wire_1.db

9 R:BTiWS:L5_A:HSPD_WT Write 41.00 count Passive Setting high speed value

10 R:BTiWS:L5_A:CWLS Read X .1 sec CW limit switch readback

11 R:BTiWS:L5_A:CCWLS Read X dsec | CCW limit switch readback

12 R:BTiWS:L5_A:POSN Read X count .1sec Wire position

13 R:BTiWS:L5_A:STATUS Read X .1 sec Drive status - STOP, RUN , BACK

14 R:BTiWS:L5_A:AUTO_SCAN Write 0.00 Passive | To start scanning, write 1

15 R:BTiWS:L5_A:ABSOLUTE_SCAN Write 0.00 count Passive To move wire at any position (default is home)

16 R:BTiWS:L5_A:CANCEL Write 1.00 Passive To cancel scanning and move to home
Wire B drive system

1 R:BTiWS:L5_B:SPAN Write 100.00 mm Passive | Setting span BTL61wsmove_B_wire_1.db

2 R:BTiWS:L5_B:PEAK1 Write 22.84 mm Passive Setting wirel peak position

3 R:BTiWS:L5_B:WIDTH1 Write 16.00 mm Passive Setting wirel width around peak

4 R:BTiWS:L5_B:PEAK2 Write 49.83 mm Passive Setting wire2 peak position

5 R:BTiWS:L5_B:WIDTH2 Write 14.00 mm Passive Setting wire2 width around peak

6 R:BTiWS:L5_B:PEAK3 Write 83.84 mm Passive Setting wire3 peak position

7 R:BTiWS:L5_B:WIDTH3 Write 20.00 mm Passive Setting wire3 width around peak

8 R:BTiWS:L5_B:LSPD_WT Write 7.00 count Passive Setting low speed value

9 R:BTiWS:L5_B:HSPD_WT Write 41.00 count Passive Setting high speed value
10 R:BTiWS:L5_B:CWLS Read X .1 sec CW limit switch readback
11 R:BTIWS:L5_B:CCWLS Read X dsec | CCW limit switch readback
12 R:BTiWS:L5_B:POSN Read X count .1sec Wire position
13 R:BTiWS:L5_B:STATUS Read X .1 sec Drive status - STOP, RUN , BACK
14 R:BTiWS:L5_B:AUTO_SCAN Write 0.00 Passive | To start scanning, write 1
15 R:BTiWS:L5_B:ABSOLUTE_SCAN Write 0.00 count Passive To move wire at any position (default is home)
16 R:BTiWS:L5_B:CANCEL Write 1.00 Passive To cancel scanning and move to home
Wire C drive system
1 R:BTiWS:L5_C:SPAN Write 100.00 mm Passive Setting span
2 R:BTiWS:L5_C:PEAK1 Write 20.71 mm Passive Setting wirel peak position
3 R:BTiWS:L5_C:WIDTH1 Write 16.00 mm Passive Setting wirel width around peak
4 R:BTiWS:L5_C:PEAK2 Write 47.63 mm Passive Setting wire2 peak position
5 R:BTiWS:L5_C:WIDTH2 Write 14.00 mm Passive Setting wire2 width around peak
6 R:BTiWS:L5_C:PEAK3 Write 80.89 mm Passive Setting wire3 peak position
7 R:BTiWS:L5_C:WIDTH3 Write 15.00 mm Passive Setting wire3 width around peak
8 R:BTiWS:L5_C:LSPD_WT Write 7.00 count Passive Setting low speed value BTL61wsmove_C_wire_1.db
9 R:BTiWS:L5_C:HSPD_WT Write 41.00 count Passive Setting high speed value
10 R:BTiWS:L5_C:CWLS Read X .1sec CW limit switch readback
11 R:BTIWS:L5_C:CCWLS Read X dsec | CCW limit switch readback
12 R:BTiWS:L5_C:POSN Read X count .1sec Wire position
13 R:BTiWS:L5_C:STATUS Read X .1 sec Drive status - STOP, RUN , BACK
14 R:BTiWS:L5_C:AUTO_SCAN Write 0.00 Passive | To start scanning, write 1
15 R:BTiWS:L5_C:ABSOLUTE_SCAN Write 0.00 count Passive To move wire at any position (default is home)
16 R:BTiWS:L5_C:CANCEL Write 1.00 Passive To cancel scanning and move to home
Wire D drive system
1 R:BTiWS:L5_D:SPAN Write 100.00 mm Passive | Setting span BTL61wsmove_D_wire_1.db
2 R:BTiWS:L5_D:PEAK1 Write 20.89 mm Passive Setting wirel peak position

3 R:BTiWS:L5_D:WIDTH1 Write 16.00 mm Passive Setting wirel width around peak
4 R:BTiWS:L5_D:PEAK2 Write 46.61 mm Passive Setting wire2 peak position
5 R:BTiWS:L5_D:WIDTH2 Write 14.00 mm Passive Setting wire2 width around peak
6 R:BTiWS:L5_D:PEAK3 Write 77.69 mm Passive Setting wire3 peak position
7 R:BTiWS:L5_D:WIDTH3 Write 12.00 mm Passive Setting wire3 width around peak
8 R:BTiWS:L5_D:LSPD_WT Write 7.00 count Passive Setting low speed value
9 R:BTiWS:L5_D:HSPD_WT Write 41.00 count Passive Setting high speed value
10 R:BTiWS:L5_D:CWLS Read X .1sec CW limit switch readback
11 R:BTiWS:L5_D:CCWLS Read X dsec | CCW limit switch readback
12 R:BTiWS:L5_D:POSN Read X count .1sec Wire position
13 R:BTiWS:L5_D:STATUS Read X .1 sec Drive status - STOP, RUN , BACK
14 R:BTiWS:L5_D:AUTO_SCAN Write 0.00 Passive | To start scanning, write 1
15 R:BTiWS:L5_D:ABSOLUTE_SCAN Write 0.00 count Passive To move wire at any position (default is home)
16 R:BTiWS:L5_D:CANCEL Write 1.00 Passive To cancel scanning and move to home
Initial value of Low Speed (R:BTiWS:L5_D:LSPD_WT = 7) corresponds to 200pps
Initial value of High Speed (R:BTiWS:L5_D:HSPD_WT = 41) corresponds to 3000pps
Wire scaner position feedback (Potentiometer)
1 R:BTiWS:L5_A:VPOS Read X volt Passive Postiton readback using dig. Multimeter
2 R:BTiWS:L5_B:VPOS Read X volt Passive Postiton readback using dig. Multimeter BTL61wsmove_HP4970AWS.db
3 R:BTiWS:L5_C:VPOS Read X volt Passive Postiton readback using dig. Multimeter
4 R:BTiWS:L5_D:VPOS Read X volt Passive Postiton readback using dig. Multimeter

2. High voltage power supply setting & monitoring:

sl No Record Name Access 3‘;::;: Unit Scan Purpose db FileName
High Voltage Power supply (DAC setting)
1 R:BTiWSD:DL5_Y:HVMON Read X volt Passive HV readback using dig. Multimeter
2 R:BTiWSD:DL5_Y:HVRB Read X count Passive DAC readback
3 R:BTiWSD:DL5_Y:HVSET Write 0.00 count Passive Setting DAC counts for HV
4 R:BTiWSD:DL5_Y:HVSET_AO Write 0.00 volt Passive Setting HV volts
1 R:BTiWSD:DL5_X:HVMON Read X volt Passive HV readback using dig. Multimeter
2 R:BTiWSD:DL5_X:HVRB Read X count Passive DAC readback
3 R:BTiWSD:DL5_X:HVSET Write 0.00 count Passive Setting DAC counts for HV
4 R:BTiWSD:DL5_X:HVSET_AO Write 0.00 volt Passive Setting HV volts
1 R:BTiWSD:DL5_Z:HVMON Read X volt Passive HV readback using dig. Multimeter BTL61hv.db
2 R:BTiWSD:DL5_Z:HVRB Read X count Passive DAC readback
3 R:BTiWSD:DL5_Z:HVSET Write 0.00 count Passive Setting DAC counts for HV
4 R:BTiWSD:DL5_Z:HVSET_AO Write 0.00 volt Passive Setting HV volts
1 R:BTiWSD:DL5_W:HVMON Read X volt Passive HV readback using dig. Multimeter
2 R:BTiWSD:DL5_W:HVRB Read X count Passive DAC readback
3 R:BTiWSD:DL5_W:HVSET Write 0.00 count Passive Setting DAC counts for HV
4 R:BTiWSD:DL5_W:HVSET_AO Write 0.00 volt Passive Setting HV volts
1 R:BTiWSDAC:L61_1:DAC_ENABLE Write 1.00 Passive Enable DAC (by default, DAC is enabled)

Either one of HVSET or HVSET_AO can be used to set DAC. For HVSET, value should be in counts. For HVSET_AO, value should be in volts

3. EVR setting & monitoring:

SI No Record Name Access Initial Value Unit Scan Purpose db FileName
Event Receiver (MRF's VME-EVR-230-RF) Setting
1 EVR1:Ena-Sel Write 1.000 Passive To enable EVR module
2 EVR1:Clk-SP Write 114.240 MHz Passive Setting event rate
3 EVR1:TimeStamp-Src Write 0.000 Passive Setting time stamp source (deafult is clock)
4 EVR1:Time:Clock-SP Write 1.000 Passive Setting time stamp prescaler
5 EVR1:FPO:Src:Pulse-SP Write 0.000 Passive Mapping pulser to front panel output evr-kekb-config.db
(default is Pulser - 0)
6 EVR1:DlyGen0:Ena-Sel Write 1.000 Passive To enable pulser
7 EVR1:DlyGen0:Polarity-Sel Write 0.000 Passive (ngtji:ﬁv’)e“aewfollf:z‘t’ive High)
8 EVR1:DlyGen0:Width-SP Write 100.000 nsec Passive Setting pulse width
9 EVR1:event:31:Gate-Delay Write 30.090 usec Passive Setting pulse delay for KEKB e-
10 EVR1:event:41:Gate-Delay Write 30.090 usec Passive Setting pulse delay for KEKB e+
11 EVR1:event:51:Gate-Delay Write 39.140 usec Passive Setting pulse delay for PF
12 EVR1:event:61:Gate-Delay Write 30.090 usec Passive Setting pulse delay for PF-Al
13 EVR1:event:71:Gate-Delay Write 30.090 usec Passive Setting pulse delay for AR
14 EVR1:event:131:Gate-Delay Write 30.090 usec Passive Setting pulse delay for KEKB e- Study
evr-kekb-events.db
15 EVR1:event:141:Gate-Delay Write 30.090 usec Passive Setting pulse delay for KEKB e+ Study
16 EVR1:event:151:Gate-Delay Write 39.265 usec Passive Setting pulse delay for PF Study
17 EVR1:event:161:Gate-Delay Write 30.090 usec Passive Setting pulse delay for PF-A1 Study
18 EVR1:event:171:Gate-Delay Write 30.090 usec Passive Setting pulse delay for AR Study
19 EVR1:event:181:Gate-Delay Write 30.090 usec Passive Setting pulse delay for No injection
20 EVR1:event:201:Gate-Delay Write 30.090 usec Passive Setting pulse delay for Slow e+
27 LIiEV:KEKB:PulO:Evt Write 0.000 Passive Mapping pulser to event code evr-kekb-pulsermap.db
Pulser enable Setting for various beam modes
1 LIiEV:KEKB:Pulser-KEKBe- Write 1.000 Passive Enabling pulser for KEKB e- mode evr-kekb-events-
2 LIiIEV:KEKB:Pulser-KEKBe+ Write 1.000 Passive Enabling pulser for KEKB e+ mode enable.db

3 LIiEV:KEKB:Pulser-PF Write 1.000 Passive Enabling pulser for PF mode

4 LIiIEV:KEKB:Pulser-PF-Al Write 1.000 Passive Enabling pulser for PF-A1- mode

5 LIiIEV:KEKB:Pulser-AR Write 1.000 Passive Enabling pulser for AR mode

6 LIiIEV:KEKB:Pulser-KEKBe-_STUDY Write 1.000 Passive Enabling pulser for KEKB e- Study mode
7 tléi\éfff;fsgier- Write 1.000 Passive Enabling pulser for KEKB e+ Study mode
8 LIiEV:KEKB:Pulser-PF_STUDY Write 1.000 Passive Enabling pulser for PF Study mode

9 LIiEV:KEKB:Pulser-PF-A1_STUDY Write 1.000 Passive Enabling pulser for PF-A1 Study mode
10 LIiEV:KEKB:Pulser-AR_STUDY Write 1.000 Passive Enabling pulser for AR Study mode

11 LIiIEV:KEKB:Pulser-NO_INJ Write 1.000 Passive Enabling pulser for No Injection mode
12 LIiEV:KEKB:Pulser-Slowe+ Write 1.000 Passive Enabling pulser for Slow e+ mode

Conclusion:

The new system is developed to acquire wire scanner data of multiple beam modes

simultaneously. The correction of wire scanner position using BPM data is not incorporated yet in the WS

record device driver. The verification of wire position by reading the DMM is not implemented. This may
be implemented by converting the DMM reading to count and comparing with the scaler reading. But the

stability of the reference voltage applied across the potentiometer must be very high to get a repeatable

value at every wire position for comparison. This system may contribute significantly for beam tuning
during Super-KEKB commissioning and subsequent stages.

Overall Note:

1.

The system clock rate has been modified to “500” (Refer to “st.cmd”), to produce minimum clock
tick of two (2) millisecond. This is required for introducing delay between the event and
consequent data acquisition (to ensure ADC conversion).

The verification of wire position using digital multimeter reading is not implemented. It requires
a very stable voltage source across the potentiometer for measuring position with high precision.

While configuring the wire scanner record (WS record), it important to assign the input links (i.e.
INPA, INPB,.....INPZ, INPAA, INPAB,.....INPAZ) strictly in the following sequence.

a) First all scaler records (i.e. NSCLR number)
b) Then all BPM records (i.e. 3 x NBPM number)
¢) Then all ADC records (i.e. NWS number)

It is also important that WS record supports only SHORT data type. Hence all input links should
be of SHORT data type.

The present WS record only accepts calibrated BPM data (i.e. X, Y & I value for each BPM). The
correction of wire scanner data using BPM is not implemented.

The EPICS device support for Micro Research Finland event generator and receiver, i.e.
“mrfioc2”, has been evaluated for the event receiver only (EVR-230RF-VME). The supports for
other hardware are not evaluated.

The event for “No Injection” mode is kept disable in the final version of the software.

“R:” is added to the record names to distinguish from the existing records. This may be removed
later.

The WS record is tested for Wire scanner with upto five BPM records.

