
Operator
Interface Channel Access:

The EPICS
Software Bus

J.O. Hill

.

Archive Tool
Alarm Tool

Application
Application

What is Channel Access (CA)

¥ Standardized communication path to a
field(s) within a record (process variable)
in any IOC database(s).

¥ This field is a communication path to an
IO channel or software.

¥ Integrates software modules into the
control system.

¥ A callable interface (library of
subroutines).

Why Use Channel Access

¥ callable interface designed for easy use by casual
applications

¥ callable interface also designed for use by system software
components such as the operator interface, sequencer, and
the archiver

• operating system transparency

¥ Network transparency
(access to remote and local channels is identical)

• CPU architecture independence (silent data conversion)

¥ Isolation from system software changes.

¥ Efficiency (host IO channels)

¥ Efficiency (network remote IO channels)

Data logger,
Data Analysis

IO Controller nIO Controller 2

Channel Access network architecture

Channel Access ServerCAS

Channel Access ClientCAC

CAS CAS

IO Controller 1
...

CAC CAC

Operator
Interface 1

Operator
Interface n...

CAC CAC CAC CAC CAC

CAS

IEEE 802.3

CAC

Client Server Model

¥ CA is a network service.

¥ Clients use the callable interface (link to the CA
library).

¥ Server replicated in each IOC (part of iocCore).

¥ Clients make requests to the servers across the
network.

¥ CA defines a network protocol.

¥ Local operations are initiated and performed by
the host processor.

¥ Remote operations are initiated but not
performed on the host processor.

Asynchronous Nature of CA

¥ CA does not wait to gain access to the network prior to
returning from each library call.

¥ Remote operation requests are buffered and sent when
the buffer fills or when you ask.

¥ Data fetched from a remote machine is generally not
immediately available.

¥ With few exceptions values written into your variables
by CA should not be referenced until you have
synchronized.

¥ All operations guaranteed to be executed in the order
requested.

Why is CA Asynchronous?

¥ Combined operations are more efficient when
sharing a common resource such as a bus.

¥ Combined operations can be more efficient
when passing through system software layers.

¥ Sometimes it is useful to perform labor on a
local processor while several operations are
completing on remote processors.

¥ The plant is often asynchronous.

Channel Access Performance for Simple, Unconverted
I/O Channel Reads and Writes

0
200
400
600
800

1000
1200
1400
1600
1800
2000

reads writes

se
c.

local access

remote
asynchronous
access

remote
synchronous
access

Methods of Synchronizing

¥ No data fetches are left outstanding after
completing a call to ca_pend_io().

¥ A synchronous replacement for ca_get():
ca_get()
ca_pend_io(),

¥ Use a monitor.

¥ Use fetch with callback.

¥ Use a synch protocol with a remote program.

Event Propagation

¥ In any process control system, an
application program must be prepared to
respond to any one of a number of
asynchronous events.

¥ Events include hardware or software state
changes (limit switches, flow indicators,
out of range analog channels, software
exceptions, etc.)

CA Software Interface to Events

¥ An event is a significant change in either the value of a field
or the condition of the record as a whole.

¥ Events are placed in a queue and handled in the order that
they occurred.

¥ A channel can be monitored by specifying a handler to be
run each time an event occurs.

¥ CA client applications using events tend to be tree
structured.

¥ Updating the clientÕs local value for a channel this way can
save on network traffic since a message soliciting the
update need not be sent.

Event Rate Management
(Analog Channels)

¥ The rate at which updates are sent over
the network should be minimized by the
project engineer within reasonable
constraints. This rate is managed by
adjusting the channelÕs deadband and
scan rate in DCT.

CA Function Status

¥ All CA functions return standardized constants.

¥ Client installed exception handlers also receive
status via these constants.

¥ CA status constants have names of the form
ÒECA_XXXXÓ.

¥ Status constants contain info about severity.

¥ Status constants contain an index into a table of
messages.

CA Status Testing Examples

¥ Checking severity and taking the default action :

¥ int status;
status = ca_xxx();
SEVCHK(status,Óthis get fails only on MondayÓ);

¥ Checking the status yourself and printing the
message:

¥ if(status != ECA_XXXX)
printf(Òthe error- %s\nÓ,ca_message(ECA_XXXX));

CA Exceptions

¥ Since the CA client library does not wait to gain access
to the network prior to returning from each call an
operation can fail in the server after the library call that
initiated it returns.

¥ Status of these unsuccessful operations are returned
from the server to the clientÕs exception handler.

¥ The default exception handler prints a message for
each unsuccessful operation and aborts the client if
the condition is severe.

¥ Operations which fail in the server are nearly always
caused by programming errors.

Channel Naming Convention
¥ CA requires that channels have a name.

¥ The IOC database requires names of the form:

¥ <record name>[.<field name>]
ie
Òrfhv01.LOPRÓ
or just
Òrfhv01Ó

¥ Record names assigned by project engineer in DCT following project
naming convention.

¥ Record field names and purposes are record type specific

¥ A list of the field names available for each record can be obtained from the
database documentation (EPICS Record Reference Manual.)

¥ If the field name is omitted, the field .VAL is assumed.
This field contains a control or read back value.

Native Data Types

¥ All channels have a ÒnativeÓ data storage type in the
IOC.

¥ All native data storage types are ÒatomicÓ.

¥ Atomic data types include:

¥ integer, floating point, string, enumerated etc.

¥ When transferring a new value to/from a channel the
client program specifies the data format to
supply/receive it in. This is often referred to as the
external data type.

¥ The external data type does can be different from the
native type if conversion is possible.

Compound Data Types

¥ Compound data types contain a channel value
combined with additional status or
configuration information.

¥ Compound types involve the database record
as a whole.

¥ Compound types can currently only be used
with gets and monitors.

¥ Data types are described in db_access.h.
(DBR_XXXX)

Connection Management
¥ Network Connections are inherently transient.

¥ A channelÕs connection state is either not
found, connected, or disconnected.

¥ CA allows you to specify a handler to be run
when a channelÕs connection state changes.

¥ Connection requires a server for the channel
and a valid network path to the server.

¥ CA automatically restores connection upon
notification from the server.

Channel Identifier

¥ Most CA functions with channel operands require a channel
identifier.

¥ CA provides a routine which opens a new channel given a
channel name and returns an identifier.

¥ CA resolves the channelÕs network address at runtime.

Ð CA looks for the channel on the host first.

Ð If not found locally, CA performs name resolution
 by broadcasting the channel name on the network.
 The server on the IOC with the channel replies.

¥ Next you receive a connection event or ca_pend_io() unblocks.

Establishing a Connection

¥ Request a channel identifier followed
by ca_pend_io().

¥ Request a channel identifier and
specify a connection handler.

¥ Many CA functions return an error
when a disconnected channel is
specified.

Difference between Remote and
Local

Channel Access

¥ Status of local operations returned
immediately

¥ Status of remote operations returned
asynchronously to an exception handler
upon failure

¥ To make codes run both remote and local
handle error conditions in both places

Channel Access OS variations

¥ On VMS and vxWorks an event handler can
preempt the main thread even if it is not in
ca_pend_xxx().

¥ On UNIX there is always only one thread of
control.

¥ On vxWorks additional threads of execution
may join a CA client context by calling
ca_import().

Note: CA clients should not be invoked
directly from the shell. Spawn a separate
task instead.

Software Releases

¥ IOC core and CA client library EPICS major
release number must match, or client will not
find sever.

¥ This is due to potential CA protocol redesign
between major releases.

¥ CA protocol is upwardly compatible within a
major release.

¥ When new features are added to the client,
older versions of the server wonÕt support
them.

Include Files

¥ cadef.h

¥ chid, catype, MACROS,
argument passing to event routines

¥ caerr.h

Ð error constant definitions
error message definitions
severity extraction/testing MACROS
message index extraction MACROS

¥ db_access.h

Ð CA standard data types defined

Libraries

¥ UNIX:
 libCom.a
 libca.a

¥ vxWorks:
 load ioc core software as usual then load

your application code containing CA_xxxx() calls.

¥ VMS:
 See examples in

<epics_root>/share/src/ca/BUILD_VMS.COM

CA Changes for R3.12

¥ Get features of ca_build_and_connect() disabled.
Prefered usage (callable interface) is now
ca_search_and_connect().

¥ ca_sg_xxx() routines have been added for
synchronizing sets of ÒputsÓ and ÒgetsÓ.

¥ ca_put_callback() has been added for notification
of ÒputÓ completion.

¥ CA supports database access control. Clients
can receive notification when access changes.

IOC

instrumentation
and

control hardware

DATABASE

database access library

device drivers

Channel Access
client

Channel Access
client

user program

C program

WORKSTATION

SNL sequence

Channel Access
server

record support

device support

database library

Channel Access
Repeater

CONNECTIONS TO CHANNELS:
opening a channel

• opening a channel produces a chid, which is the `handle' for subsequent
interactions with the channel

• the chid is produced immediately, before any attempt actually to connect to the
channel

• ca_pend_io() is used for searches which don't specify a connection handler

chid pCh1, pCh2;
stat = ca_search("POWER:BASE", &pCh1);
SEVCHK(stat, "ca_search for pCh1");
stat = ca_search("POWER:LAG30", &pCh2);
SEVCHK(stat, "ca_search for pCh2");
stat = ca_pend_io(2.);
SEVCHK(stat, "pend for searches");

CONNECTIONS TO CHANNELS: closing

¥ closing a channel wraps up all pending activity
for it, including canceling its monitor (if any)
and its connection

a channel

handler (if any)

¥ Channel Access automatically closes channels
at program

termination, but explicit closes are
good form

stat = ca_clear_channel(pCh1);
SEVCHK(stat, "ca_clear_channel for pCh1");
stat = ca_clear_channel(pCh2);
SEVCHK(stat, "ca clear channel for pCh2");

