State Notation Language
and Sequencer Users’ Guide

William Lupton (wlupton@keck.hawaii.edu)
W. M. Keck Observatory

Kamuela, HI 96743, USA

March 2000

EPICS Release 3.14.0

EPICS Release: R3.14.0 State Notation Language and Sequencer Users’ Guide

State Notation Language and Sequencer Users’ Guide Document Revision: 1

Table of Contents

Tableof Contents. ii
Chapter 1: Introduction. i 1
1.1 NOtE ON VeISIONS . . .t e e 1
1 2. OVEIVIEW . oot 1....
1.3. ContentofthisManual. e 2
1.4. Copyright and ReStrCtioNSt 2
1.5.Noteson ThisRelease e e 2
1.6. Future Plans 5....
1.7.Notes ON VL. O Release i e 5
Chapter 2: State Notation Language Concepts 7
2.1. The State Transition Diagram e 7
2.2. Elements of the State Notation Language 8
2.3. AComplete State Program.t 8
2.4. Adding a Second State Set. 9
2.5. Variable Names Using MacCros.ttt e 10
2.6, Data TYPES . . o oot 11....
2.7. Arrays of Variables. e 11
2.8. Dynamic ASSIgNMENt 12
2.9. Status of Control System Variables 12
2.10.Synchronizing State Setswith EventFlags. 13
2.11.Queling MONItOrSot 14
2.12.Asynchronous Use of pvGet().ot 14
2.13.Asynchronous Use of pvPUt() oo oo 15
2.14.Connection Management.t 16
2.15.Multiple Instances and Reentrant Object Code. 16
2.16.Control System Variable Element Count 16
Chapter 3: Compiling a State Program 19

EPICS Release: R3.14.0

Table of Contents iii

Table of Contents

3.1 Filesneeded. 19.....
3.2. The State Notation Compiler. e 19
3.3. Name of output file 20
3.4. Compiler OpLioNS. e 20
3.5, Compiler Errorso 21
3.6. Compiler Warningso e 21
3.7. Compiling and Linking a State Program under Unix 21
3.8. USINg MaKeBaSEAPD - - -« v v ettt et e 22
Chapter 4: Using the Run Time Sequencer 25
4.1. VXWorks-specific inStructions 25
4.2. Unix-specific iINStruCtions 26
4.3. Specifying Run-Time Parameters 27
4.4, Sequencer Logging . ..o oot e 28
4.5. What Triggers an EVent? e 28
Chapter 5: State Notation Language Syntax 29
5.1. Typographical conventions i 29
5.2, State Program. 9..... 2
5.3. Definitions 30...
5.4, State SetS 32...
5.5. Statements and EXPressions.ot 34
5.6. BUilt-in FUNCLIONS e 35
5.7. C Compatibility Features. 38
Chapter 6: The PV (Process Variable) APl 41
6.1. INtroductiono e 41. ..
6.2. Rationale Al ...
6.3. Atour of the APl 42
6.4. The APlin More Detail. e 43
6.5. Supporting a New Message System 48
Chapter 7: Examples of State Programs 53
7.1. Entryand exitaction example e 53
7.2. Dynamic assignment example. 54
7.3. Complex example 54
Chapter 8: Installation. i 59
8.1. PrerequIsItes. 59....
8.2. Obtaining the distribution 59
8.3. Unpacking the distribution 60
8.4. Preparing to build 60
8.5. Building and installing. 61
8.6. Verifying the installation. 61
8.7. Using the installation. 63
Chapter 9: Acronyms/Glossary. 65
9.1, ACIONYM LiSt. . . .ottt e 65
0.2, GlOSSaAIY . . . ittt 65. . ..
X . ot 67

Table of Contents Document Revision: 1

Chapter 1: Introduction

1.1 Note on Versions

Version 1.9 of this manual described version 1.9 of the sequencer and was written by
Andy Kozubal, the original author of this software. This version of the manual describes
version 2.0, for which the changes have been implemented by William Lupton of W. M.
Keck Observatory and Greg White of Stanford Linear Accelerator Center (SLAC).

Version 2.0 differs from version 1.9 mainly in that sequencer run-time code can run under
any operating system for which an EPICS OSI (Operating System Independent) layer is
available, and message systems other than channel access can be used. It is dependent on
libraries which will be generally available only with EPICS R3.14.

An interim version 1.9.4 was made available to the EPICS community; all new
developments apart from major bug fixes will be based on version 2.0.

1.2 Overview

The state notation language (SNL) provides a simple yet powerful tool for programming
sequential operations in a real-time control system. Based on the familiar state transition
diagram concepts, programs can be written without the usual complexity involved with
task scheduling, event handling, and input/output programming.

Programs produced by the state notation language are executed within the framework of
the run-time sequencer. The sequencer drives the program to states based on events, and
establishes interfaces to the program that enable it to perform real-time control in a multi-
tasking environment. The sequencer also provides services to the program such as
establishing connections to control system variables and handling asynchronous events.

EPICS Release: R3.14

Introduction 1

Chapter 1: Introduction
Content of this Manual

The state notation language and sequencer are components of the Experimental Physics
and Industrial Controls System (EPICS). EPICS is a system of interactive applications
development tools (toolkit) and a common run-time environment (CORE) that allows
users to build and execute real-time control and data acquisition systems for experimental
facilities, such as particle accelerators, free electron lasers and telescopes. EPICS is a
product of the Accelerator Automation and Controls Group (AOT-8), which is within the
Accelerator Operations and Technology (AOT) Division at the Los Alamos National
Laboratory. The sequencer interfaces to the underlying control system through a generic
PV (process variable) API that supports, among other message systems, the channel
access facility of EPICS.

1.3 Content of this Manual

This users manual describes how to use the state notation language to program real-time
applications. The user is first introduced to the state notation language concepts through
the state transition diagram. Through a series of examples, the user gains an understanding
of most of the SNL language elements. Next, the manual explains procedures for
compiling and executing programs that are generated by the SNL. Testing and debugging
techniques are presented. Then, we present a complete description of the SNL syntax and
the sequencer options. Finally, we describe the PV layer, give some examples of working
sequences, and describe how to build, test and work with the sequencer installation.

1.4 Copyright and Restrictions

This software was produced under U.S. Government contract at Los Alamos National
Laboratory and at Argonne National Laboratory. The EPICS software is copyright by the
Regents of the University of California and the University of Chicago. This document may
be reproduced and distributed without restrictions, provided it is reproduced in its entirety,
including the cover page.

1.5 Notes on This Release

1.5.1 Portability
changes

New version 1.9 features have been moved to Section 1.7 on page 5. This section gives
brief notes on version 2.0 changes.

Version 2.0 of the sequencer and state notation compiler is available for EPICS release
R3.14 and later. We have added several enhancements to the language and to the run-time
sequencer. State programs must be compiled under the new state notation compiler to
execute properly with the new sequencer. However, under most circumstances no source-
level changes to existing programs are required.

These changes allow state programs to run unchanged on hosts and IOCs.

Introduction Document Revision: 1

Chapter 1: Introduction
Notes on This Release

Replaced VxWorks
dependencies with
OSI routines

Replaced direct
channel access calls
with new PV API

Added optional
generation of main
program

1.5.2 New Language
Features

Entry handler

Entry and exit actions

State options

Queueable monitors

Device support

All VxWorks routines have been replaced with the appropriate OSI (Operating System
Independent) routines. State programs can run in any environment for which there is an
OSI implementation.

Unused (and undocumentedX_OPToption has been removed.

All CA calls have been replaced with equivalent calls to a new PV (process variable) API
which can be layered on top of not just CA but also other message systems. See Chapter 6:
on page 41.

The new+m(main) option generates a C main program whose single argument is a list of
macro assignments.

When this option is enabled, the main thread reads from standard input and can execute
seqShow, seqChanShow etc.on demand. End of file causes the sequencer to exit.

A one-offentry handler can be supplied.{. the existingexit handler). This is called
once, at sequencer start-up, in the context of the first state set, before the remaining state
set threads have been created. See “entry_handler” on page 30.

Theentry block of a state is executed each time the state is enteredxihe block is
executed each time the state is left. Note that these blocks are aassociated with a state and
are not the same as the one-off entry and exit handlers. See “entry_action” on page 33 and
“exit_action” on page 33.

-t ,-e and-x are now recognized options within the scope of a stateinhibits the
“timer reset” on re-entry to a state from itsele (for “entry”) is used with the new
entry block, and forces thentry statements to be executed on all entries to a state,
even if from the same statex (for “exit”) is complementary tee , but for the newexit

block. See “state_option_stmt” on page 33.

Monitor messages can be queued and then dequeued at leisure. This means that monitor
messages are not lost, even when posted rapidly in succession. This feature is supported
by newsyncQ, pvGetQ andpvFreeQ language elements, and a negqQueueShow

routine. When SNL arrays are used, a single queue is shared by the control system
variables associated with the elements of the array, which can be useful for parallel
control. See “Queuing Monitors” on page 14 and “syncq_stmt” on page 32.

An device support module has been added. This allows EPICS records to refererence
sequencer internals. At present this is very basic and can only return state-set names. See
Section 8.6 on page 61 for a well-hidden example (lookdagét ssO).

EPICS Release: R3.14

Introduction 3

Chapter 1: Introduction
Notes on This Release

Local variables SNL does not support the declaration of local variables. However, the C code generated
for a when clause is now placed within an extra level of braces and the C escape
mechanism can be used to declare a local variable. See “Variable Extent” on page 39.

More functions are In previous versions, some functions.g. pvPut , have acquired a resource lock and

safe in action code others,e.g. efTestAndClear , have not. Those that didn’t were intended for use in
action code and those that did not were intended for usehan clauses. This was
confusing and dangerous. All such functions now acquire a mutex (that can be taken
recursively).

Asynchronous puts pvPut can now put process variables asynchronously by using an &®dNC
argument. Completion can be tested using the meRPutComplete . Arrays are
supported (spvPutComplete can be used to test whether a set of puts has completed).
See Section 2.13 on page 15 and “pvPutComplete” on page 35.

Synchronous/ pvGet andpvPut both accept an option&YNCor ASYNCargument that, fopvGet ,
asynchronous overrides the default as set using t#ze option and, forpvPut , overrides the default
override on gets and synchronous behavior. See “pvPut” on page 35 and “pvGet” on page 36.

puts

Sequencer deletion re- Seguencer deletion has been completely re-written. You can no longer delete a sequencer
written by deleting one of its tasks. Instead you must use the segStop routine. See
“Stopping the State Program Tasks” on page 26.

efClear can wake up Clearing an event flag can now wake up state sets that reference the eventvitagnin
state sets tests.

More C syntax is The *to " in assign , sync andsyncQ statements is how optional.
supported Compound expressions suchiak,j=2 (often used ifior loops) are now permitted.
Variables can now be initialized in declarations sucintais2;

Pre-processor #” lines are now permitted between state sets and states (relaxes
restrictions on usinginclude to include code).

“~” (complement) and”™” (exclusive or) operators are permitted.

ANSI string concatenatior.g.“xXxx” “yyy” is the same axxxyyy” , is supported.

Full exponential representation is supported for numbers (previously couldn’'tiise *

format).
1.5.3 Bugs fixed
Avoidance of SEGV no longer occurs if an undeclared variable or event flag is referenced
segmentation SEGV no longer occurs if the last bit of an event mask is used

violations , -
SEGV no longer occurs when doisggShow and there was no previous state

4 Introduction Document Revision: 1

Chapter 1: Introduction
Future Plans

Avoidance of race
condition which
prevented monitors
from being enabled

1.5.4 Miscellaneous

Miscellaneous other problems found by purify were fixed.

If a connection handler was called befa®g_pvMonitor , a race condition meant that
theca_add_array_event routine might never get called.

Compilation warnings have been avoided wherever possible.
A 60Hz system clock frequency is no longer assumed.
Error reporting is now more consistent; it is currently just usmigpgPrintf

The new EPICS R3.1donfigure -based make rules are used.

1.6 Future Plans

Device support
Local variables

pvNew dynamic
loading

Hierarchical states

Several items remain unsupported or only partially supported. Users are encouraged to
provide feedback on this list or on other desired items.

This is partially supported. See “Device support” on page 3.

These are partially supported. See “Local variables” on page 4.

This would remove some undesirable library dependencies. See “Overview” on page 42.

This would be a major enhancement and would, incidentally, bring the sequencer model
into very close agreement with the Harel model that is espoused by the UML. Events
would be propagated up the state hierarchy.

1.7 Notes on v1.9 Release

Number of control
system variables

With this version (v1.9), we have incorporated many extensions to the state notation
language. Some of these changes offer significant advantages for programs and systems
with a large number of control system variables.

The previous restriction on the number of control system variables that could be defined
no longer applies. Only the amount of memory on the target processor limits the number
of variables.

EPICS Release: R3.14

Introduction 5

Chapter 1: Introduction
Notes on v1.9 Release

Array assignments

Dynamic assignments

Hex constants

Time stamp

Pointers

seqShow

seqChanShow

ANSI prototypes

Fix for task deletion

Individual elements of an array may be assigned to control system variables. This feature
simplifies many codes that contain groups of similar variables. Furthermore, double-
subscripted arrays allow arrays of array-valued variables.

Control system variables may now be dynamically assigned or re-assigned within the
language at run time.

Hexadecimal numbers are now permitted within the language syntax. Previously, these
had to be defined in escaped C code.

The programmer now has access to the time stamp associated with a control system
variable.

Variables may now be declared as pointers.

We enhanced theeqShow command to present more relevant information about the
running state programs.

TheseqChanShow command now allows specification of a search string on the variable
name, permits forward and backward stepping or skipping through the variable list, and
optionally displays only variables that are or are not connected.

The syntax for displaying only variables that are not connected is
seqChanShow “<seq_program_name>", “-”

SNC include files now use ANSI prototypes for all functions. To the programmer this
means that an ANSI compiler must be used to compile the intermediate C code.

Version 1.8 of the sequencer didn't handle the task deletion properly if a task tried to
delete itself. We corrected this in version 1.9.

Introduction Document Revision: 1

Chapter 2: State Notation Language Concepts

2.1 The State Transition Diagram

The state transition diagram or STD is a graphical notation for specifying the behavior of a
control system in terms of control transformations. The STD serves to represent the action
taken by the control system in response to both the present internal state and some external
event or condition. To understand the state notation language one must first understand the
STD schema.

A simple STD is shown in figure 1. In this example the level of an input voltage is sensed,
and a light is turned on if the voltage is greater than 5 volts and turned off if the voltage
becomes less than 3 volts. Note that the output or action depends not only on the input or
condition, but also on the current memory or state. For instance, specifying an input of 4.2
volts does not directly specify the output; that depends on the current state.

Light is Off

-
V>5 V<3
Turn light on Turn light off

Lightis On

Figure 2-1: A simple state transition diagram

EPICS Release: R3.14

State Notation Language Concepts 7

Chapter 2: State Notation Language Concepts
Elements of the State Notation Language

2.2 Elements of the State Notation Language

The following SNL code segment expresses the STD in Figure 2-1 on page 7:

state light_off {
when (v > 5.0) {
light = TRUE;
pvPut(light);
} state light_on
}

state light_on {
when (v < 3.0) {
light = FALSE;
pvPut(light);
} state light_off
}

You will notice that the SNL appears to have a structure and syntax that is similar to the C
language. In fact the SNL uses its own syntax plus a subset of C, such as expressions,
assignment statements, and function calls. This example contains two code blocks that
define stateslight off andlight on . Within these blocks argthen statements

that define the events\(* > 5.0 "and “v < 3.0 "). Following these statements are
blocks containing actions (C statements). Pr@ut function writes or puts the value in

the variabldight to the appropriate control system variables. Finally, the next states are
specified following the action blocks.

For the previous example to execute properly the variabkesdlight must be declared
and associated with control system variables using the following declarations:

float Vv,

short light;

assign v to “Input_voltage”;
assign light to “Indicator_light”;

The aboveassign statements associate the variableand light with the control
system variables Iiput_voltage " and “Indicator_light " respectively. We
want the value ofv to be updated automatically whenever it changes. This is
accomplished with the following declaration:

monitor V;

Whenever the value in the control system changes, the valwevafl likewise change
(within the time constraints of the underlying system).

2.3 A Complete State Program

Here is what the complete state program for our example looks like:

program level_check

float V;

assign v to “Input_voltage”;
monitor v;

short light;

assign light to “Indicator_light”;

ss volt_check {

8 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Adding a Second State Set

state light_off

{
when (v > 5.0) {
/* turn light on */
light = TRUE;
pvPut(light);
} state light_on
}
state light_on
{
when (v < 5.0) {
/* turn light off */
light = FALSE;
pvPut(light);
} state light_off
}

}

To distinguish a state program from other state programs it must be assigned a name. This
was done in the above example with the statement:

program level_check

As we'll see in the next example, we can have multiple state transition diagrams in one
state program. In SNL terms these are referred tstate setsEach state program may
have one or more named state sets. This was denoted by the statement block:

ssvolt_check { ...}

2.4 Adding a Second State Set

We will now add a second state set to the previous example. This new state set generates a
changing value as its output (a triangle function with amplitude 11).

First, we add the following lines to the declaration:

float vout;
float delta;
assign vout to “Output_voltage”;

Next we add the following lines after the first state set:

ss generate_voltage {
state init {
when () {
vout = 0.0;
pvPut(vout);
delta = 0.2;
} state ramp
}
state ramp {
when (delay(0.1)) {
if (delta > 0.0 && vout >=11.0) ||
(delta < 0.0 && vout <=-11.0))
delta = -delta; /* change direction */
vout += delta;
} state ramp;

EPICS Release: R3.14 State Notation Language Concepts 9

Chapter 2: State Notation Language Concepts

Variable Names Using Macros

}

The above example exhibits several concepts. First, note thatitbie statement in state

init contains an empty event expression. This means unconditional execution of the
transition. Becausait is the first state in the state set, it is assumed to be the initial
state. You will find this to be a convenient method for initialization. Also, notice that the
ramp state always returns to itself. This is a permissible and often useful construct. The
structure of this state set is shown in the STD in Figure 2-2 on page 10.

START

Figure 2-2: Structure of generate_voltage State Set

The final concept introduced in the last example isdieéay function. This function
returns aTRUEvalue after a specified time interval from when the state was entered. The
parameter talelay specifies the number of seconds, and must be a floating point value
(constant or expression).

At this point, you may wish to try an example with the two state sets. You can jump ahead
and read parts of Chapters 3-5. You probably want to pick unique names for your control
system variables, rather than the ones used above. You may also wish to replace the
pvPut statements withprintf statements to displayHigh ” and “Low” on your
console.

2.5 Variable Names Using Macros

One of the features of the SNL and run-time sequencer is the ability to specify the names
of control system variables at run-time. This is done by using macro substitution. In our
example we could replace thesign statements with the following:

assign v to “{unit}:ail”;
assign vout to “{unit}:aol”;

The string within the curly brackets is a macro which has a naomt(“ ” in this case). At
run-time you give the macro a value, which is substituted in the above string to form a
complete control system variable name. For example, if the maang “” is given a

name DTL_6:CM_2", then the run-time variable name i®TL_6:CM_2:ail ”. More

than one macro may be specified within a string, and the entire string may be a macro. See
Section 4.3 on page 27 for more on macros.

10

State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Data Types

2.6 Data Types

The allowable variable declaration types correspond to the C tyhes:, unsigned

char ,short ,unsigned short ,int ,unsigned int ,long ,unsigned long

float , anddouble . In addition there is the typgtring , which is a fixed array size of
typechar (at the time of writing, a string can hold 40 characters). Sequencer variables
having any of these types may be assigned to a control system variable. The type declared
does not have to be the same as the native control system value type. The conversion
between types is performed at run-time.

You may specify array variables as follows:
long arc_wif[1000];

When assigned to a control system variable, operations syctPag are performed for
the entire array.

2.7 Arrays of Variables

Often it is necessary to have several associated control system variables. The ability to
assign each element of an SNL array to a separate control system variable can
significantly reduce the code complexity. The following illustrates this point:

float Vin[4];

assign Vin[0] to “{unit}1”;

assign Vin[1] to “{unit}2”;

assign Vin[2] to “{unit}3”;

assign Vin[3] to “{unit}4”;

We can then take advantage of then array to reduce code size as in the following
example:

for (i=0;i<4;i++) {
Vin[i] = 0.0;
pvPut (Vin[i]);

We also have a shorthand method for assigning channels to array elements:
assign Vin to { “{unit}1”, “{unit}2”, “{unit}3”, “{{unit}4” };
Similarly, the monitor declaration may be either by individual element:

monitor Vin[0];
monitor Vin[1];
monitor Vin[2];
monitor Vin[3];

Alternatively, we can do this for the entire array:
monitor Vin;

And the same goes when synchronizing with event flags (Section 2.10 on page 13) and
gueuing monitors (Section 2.11 on page 14). SNL arrays are really quite powerful.

Double subscripts offer additional options.
double X[2][100];

” o«

assign X to {"apple”, “orange”};

EPICS Release: R3.14

State Notation Language Concepts 11

Chapter 2: State Notation Language Concepts

Dynamic Assignment

The declaration creates an array with 200 elements. The first 100 elemeKtsref
assigned to (arraygpple , and the second 100 elements are assigned to (aremge .

It is important to understand the distinction between the first and second array indices
here. The first index defines a 2-element array of which each element is associated with a
control system variable. The second index defines a 100-element double array to hold the
value of each of the two control system variables. When used in a context where a number
is expected, both indices must be specified. X[1][49] s the 50th element of the
value oforange . When used in a context where a control system variable is expected,
e.g.with pvPut , then only the first index should be specified, X[1] for orange .

2.8 Dynamic Assignment

You may dynamically assign or re-assign variable to control system variables during the
program execution as follows:

float Xmotor;
assign Xmotor to “Motor_A_2";

sprintf (pvName, “Motor_%s_%d”, snum, mnum)
pvAssign (Xmotor[i], pvName);

An empty string in the assign declaration implies no initial assignment:
assign Xmotor to “”;

Likewise, an empty string can de-assign a variable:

pvAssign(Xmotor, “");

The current assignment status of a variable is returned bpwAssigned function as
follows:

isAssigned = pvAssigned(Xmotor);

The number of assigned variables is returned by gliAssignCount function as
follows:

numAssigned = pvAssignCount();
The following inequality will always hold:
pvConnectCount() <= pvAssignCount() <= pvChannelCount()

Having assigned a variable, you should wait for it to connect before using it (although it is
OK to monitor it). See Section 2.14 on page 16.

2.9 Status of Control System Variables

Control system variables have an associated status, severity and time stamp. You can
obtain these with th@vStatus , pvSeverity and pvTimeStamp functions. For
example:

when (pvStatus(x_motor) != pvStatOK) {
printf(“X motor status=%d, severity=%d, timestamp=%d\n”,
pvStatus(x_motor), pvSeverity(x_motor),
pvTimeStamp(x_motor).secPastEpoch);

12

State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Synchronizing State Sets with Event Flags

These routines are described in Section 5.1 on page 29. The values for status and severity
are defined in the include filpvAlarm.h , and the time stamp is returned as a standard
EPICS TS_STAMPstructure, which is defined itsStamp.h . Both these files are
automatically included when compiling sequences (but the SNL compiler doesn’t know
about them, so you will get warnings when using constantsfik&tatOK or tags like
secPastEpoch).

2.10 Synchronizing State Sets with Event Flags

State sets within a state program may be synchronized through the use of event flags.
Typically, one state set will set an event flag, and another state set will test that event flag
within awhen clause. Thesync statement may also be used to associate an event flag
with a control system variable that is being monitored. In that case, whenever a monitor is
delivered, the corresponding event flag is set. Note that this provides an alternative to
testing the value of the monitored channel and is particularly valuable when the channel
being tested is an array or when it can have multiple values and an action must occur for
any change.

This example shows a state set that forces a low limit always to be less than or equal to a
high limit. The firstwhen clause fires when the low limit changes and someone has
attempted to set it above the high limit. The secaritn clause fires when the opposite
situation occurs.

double loLimit;

assign loLimit to “demo:loLimit”;
monitor loLimit;

evflag loFlag;

sync loLimit loFlag;

double hiLimit;

assign hiLimit to “demo:hiLimit”;
monitor hiLimit;

evflag hiFlag;

sync hiLimit hiFlag;

ss limit {
state START {
when (efTestAndClear(loFlag) && loLimit > hiLimit) {
hiLimit = loLimit;
pvPut(hiLimit);
} state START

when (efTestAndClear(hiFlag) && hiLimit < loLimit) {
loLimit = hiLimit;
pvPut(loLimit);

} state START

}

The event flag is actually associated with the SNL variable, not the underlying control
system variable. If the SNL variable is an array then the event flag is set whenever a
monitor is posted on any of the control system variables that are associated with an
element of that array.

EPICS Release: R3.14

State Notation Language Concepts 13

Chapter 2: State Notation Language Concepts

Queuing Monitors

2.11 Queuing Monitors

Neither testing the value of a monitored channel iwtzen clause nor associating the
channel with an event flag and then testing the event flag can guarantee that the sequence
is aware of all monitors posted on the channel. Often this doesn’t matter, but sometimes it
does. For example, a variable may transition to 1 and then back to 0 to indicate that a
command is active and has completed. These transitions may occur in rapid succession.
This problem can be avoided by using thgcQ statement to associate a variable with

both a queue and an event flag. ThasetQ function retrieves and removes the head of
queue.

This example illustrates a typical use pfGetQ : setting a command variable to 1 and
then changing state as an active flag transitions to 1 and then back to 0. Note the use of
pvFreeQ to clear the queue before sending the command. Note also thatGiétQ

hadn’'t been used then the active flag’s transitions from 0 to 1 and back to 0 might both
have occurred before thehen clause in thesent state fired.

long command; assign command to “commandVar”;

long active; assign active to “activeVar”; monitor active;
evflag activeFlag; syncQ active activeFlag;

state start {
when () {
pvFreeQ(active);
command = 1;
pvPut(command);
} state sent

}

state sent {
when (pvGetQ(active) && active) {

} state high

}

state high {
when (pvGetQ(active) && 'active) {
} state done

}

The active SNL variable could have been an array in the above example. It could
therefore have been associated with a set of related control sgstéra flags. In this

case, the queue would have had an entry added to it whenever a monitor was posted on any
of the underlying control systeattive flags.

2.12 Asynchronous Use of pvGet()

Normally thepvGet operation completes before the function returns, thus ensuring data
integrity. However, it is possible to use these functions asynchronously by specifying the
+a compiler flag (see Section 3.4 on page 20). The operation might not be initiated until
the action statements in the current transition have been completed and it could complete
at any later time. To test for completion use the functimGetComplete , which is
described in “pvMonitor” on page 36.

14

State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Asynchronous Use of pvPut()

pvGet also accepts an option8YNCor ASYNCargument, which overrides thea
compiler flag. For example:

pvGet(initActive[i], ASYNC);

2.13 Asynchronous Use of pvPut()

Normally the pvPut operation completes asynchronously. In the past it has been the
responsibility of the programmer to ensure that the operation completed (typically by
monitoring other variables). However, the functipmPutComplete can now be used

for this. Also, while the+a compiler flag does not affect put operatiopsPut , like
pvGet , accepts an option&YNCor ASYNCargument, which forces a synchronous or
asynchronous put. For example:

pvPut(init[i], SYNC);

pvPutComplete supports arrays and can be used to check whether a set of puts have all
completed. This example illustrates how to manage a set of parallel commands.

#define N 3
long init[N];
long done[N]; /* used in the modified example below */
assign init to {“ssl:init", “ss2:init”, “ss3:init"};
state inactive {
when () {
for (i=0;i<N;i++){
initfi] = 1;
pvPut(initfi]l, ASYNC);
}

} state active

}

state active {
when (pvPutComplete(init)) {
} state done

when (delay(10.0)) {
} state timeout

}

pvPutComplete also supports optional arguments to wake up the state set as each put
completes. The following could be inserted before the filseén clause in theactive

state above. Th@RUEargument causegvPutComplete to returnTRUEwhen any
command completed (rather than only when all commands complete).ddhe
argument is the address ofang array of the same size ast ; its elements are set to

0 for puts that are not yet complete and to 1 for puts that are complete.

when (pvPutComplete(init, TRUE, done)) {
for (i=0;i<N;i++)
printf(" %ld", done[i]);
printf("\n");
} state active

EPICS Release: R3.14 State Notation Language Concepts 15

Chapter 2: State Notation Language Concepts

Connection Management

2.14 Connection Management

All control system variable connections are handled by the sequencer via the PV API.
Normally the state programs are not run until all control system variables are connected.
However, with the-c compiler flag, execution begins while the connections are being
established. The program can test for each variable’s connection status with the
pvConnected routine, or it can test for all variables connected with the following
comparison (if not using dynamic assignment, Section 2.8 on pagevzA2signCount

will be the same ggvChannelCount):

pvConnectCount() == pvAssignCount()

These routines are described in Section 5.6 on page 35. If a variable disconnects or re-
connects during execution of a state program, the sequencer updates the connection status
appropriately; this can be tested iwhen clause, as in:

when (pvConnectCount() < pvAssignCount()) {
} state disconnected

When using dynamic assignment, you should wait for the newly assigned variables to
connect, as in:

when (pvConnectCount() == pvAssignCount()) {
} state connected

when (delay(10)) {

} state connect_timeout

Note that the connection callback may be delivered before or after the initial monitor
callback (the PV API does not specify the behavior, although the underlying message
system may do so). If this matters to you, you should synchronize the value with an event
flag and wait for the event flag to be set before proceeding. See Section 2.10 on page 13
for an example.

2.15 Multiple Instances and Reentrant Object Code

Occasionally you will create a state program that can be used in multiple instances. If
these instances run in separate address spaces, there is no problem. However, if more than
one instance must be executed simultaneously in a single address space, then the objects
must be made reentrant using the compiler flag. With this flag all variables are
allocated dynamically at run time; otherwise they are declared static. Withrttiag all
variables become elements of a common data structure, and therefore access to variables
is slightly less efficient.

2.16 Control System Variable Element Count

All requests for control system variables that are arrays assume the array size for the
element count. However, if the control system variable has a smaller count than the array
size, the smaller number is used for all requests. This count is available with the
pvCount function. The following example illustrates this:

float wf[2000];
assign wf to “{unit}:CavField.FVAL";
int LthWF;

16

State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts

Control System Variable Element Count

LthWF = pvCount(wf);
for (i=0; i < LthWF; i++) {

}
pvPut(wf);

EPICS Release: R3.14

State Notation Language Concepts

17

Chapter 2: State Notation Language Concepts
Control System Variable Element Count

18 State Notation Language Concepts Document Revision: 1

Chapter 3:

Compiling a State Program

The sequencer is distributed as an EPICS R3mdkeBaseApp application. The first
sections of this chapter show how to build a Unix sequence independent of any particular
build environment. These sections are followed by a section describing how to use
makeBaseApp to build sequences. See Chapter 3: on page 19 for installation
instructions.

3.1 Files needed

In order to compile and run an EPICS sequence, a C/C++ compiler and the following files
are required.

1. snc, the SNL compiler

2. sequencer include filsegCom.h andpvAlarm.h

3. EPICS include fileshareLib.h , epicsTypes.h andtsStamp.h

4

. if using the+tmcompiler option, EPICS include filasiThread.h , osiSem.h |,
errlog.h andtaskwd.h (and files included by them)

5. sequencer librariebseq , libpv andlibpvXxx (for message systems,g.
libpvCa for CA); on an IOC, these are linked intseqLibrary and
pvLibrary

6. libraries for any message systems other than CA

7. EPICS librariedibca (if using CA) andlibCom ; on an IOC, these are linked
into iocCoreLibrary

3.2 The State Notation Compiler

The state notation compiler (SNC) converts the state notation language (SNL) into C code,
which is then compiled to produce a run-time object module. The C pre-processor may be
used prior to SNC. If we have a state program file narreesd.st then the steps to
compile are similar to the following:

snc test.st
gcc -c test.c -o test.o ...additional compiler options
gcc test.o -o test ...additional loader options

EPICS Release: R3.14

Compiling a State Program 19

Chapter 3: Compiling a State Program

Name of output file

Alternatively, using the C pre-processor:

gcce -E -x ¢ test.st >test.i

snc test.i
gcc -c test.c -o test.o ...additional compiler options
gcc test.o -0 test ...additional loader options

Using the C pre-processor allows you to include SNL fikia¢lude directive), to use
#define directives, and to perform conditional compilirgg(#ifdef).

SNC .
test.st test.c test.o

test.st

Figure 3-1: Two Methods of Compiling a State Program

3.3 Name of output file

The output file name will that of the input file with the extension replacedevitifhe
-0 option can be used to override the output file name.

Actually the rules are a little more complex that the abagé: and single-character
extensions are replaced with ; otherwise.c is appended to the full file name. In all
cases, theo compiler option overrides.

3.4 Compiler Options

SNC provides 8 compiler options. You specify the option by specifying a key character
preceded by a plus or minus sign. A plus sign turns the option on, and a minus turns the
option off. The options are:

+a AsynchronouspvGet, i.e. the program will proceed before the operation is
completed.

-a pvGet returns after the operation is completed. This is the default if an option is
not specified.

+c Wait for all database connections before allowing the state program to begin
execution. This is the default.

-c Allow the state program to begin execution before connections are established to all
channel.

+d Turn on run-time debug messages.

-d Turn off run-time debug messages. This is the default.

20

Compiling a State Program Document Revision: 1

Chapter 3: Compiling a State Program
Compiler Errors

Use the new event flag mode. This is the default.
Use the old event flag mode (clear flags after executing a when statement).

Produce C compiler error messages with references to source (.st) lines. This is the
default.

Produce C compiler error messages with references to .c file lines.
Generate a Unix C main program (a wrapper around a call sethéunction).
Do not produce a Unix C main program. This is the default.

Make the run-time code reentrant, thus allowing more than one instance of the state
program to run on an IOC.

Run-time code is not reentrant, thus saving start-up time and memory. This is the
default.

Display SNC warning messages. This is the default.

Suppress SNC warnings.

Options may also be included within the declaration section of a state program:

option +r;
option -c;

3.5 Compiler Errors

The SNC detects most errors, displays an error message with the line number, and aborts
further compilation. Some errors may not be detected until the C compilation phase. Such
errors will display the line number of the SNL source file. If you wish to see the line
number of the C file then you should use the (“ell”) compiler option. However, this is

not recommended unless you are familiar with the C file format and its relation to the SNL

file.

3.6 Compiler Warnings

Certain inconsistencies detected by the SNC are flagged with error messages. An example
would be a variable that is used in the SNL context, but declared in escaped C code. These
warnings may be suppressed with ftvecompiler option.

3.7 Compiling and Linking a State Program under Unix

Under Unix, either theemcompiler option should be used to crea C main program or
else the programmer should write a main program (the main program plays the same role
as the VxWorks startup script).

Here is a full build of a simple state program from source under Solaris. Compiler and
loader options will vary with other operating systems. It is assumed that the sequencer is
in /usr/local/epics/seq and that EPICS is ifusr/local/epics

EPICS Release: R3.14

Compiling a State Program 21

Chapter 3: Compiling a State Program

Using makeBaseApp

gcc -E -x ¢ demo.st >demo.i
snc +m demo.i

gcc -D_POSIX_C_SOURCE=199506L -D_POSIX_THREADS -D_REENTRANT \
-D__EXTENSIONS__ -DnoExceptionsFromCXX \
-DOSITHREAD_USE_DEFAULT_STACK\
-l
-l/usr/local/epics/seqg/include \
-l/usr/local/epics/base/include/os/solaris \
-l/usr/local/epics/baselinclude -c demo.c

g++ -0 demo\
-L/usr/local/epics/seq/lib/solaris-sparc \
-L/usr/local/epics/basel/lib/solaris-sparc \
demo.o -Iseq -lIpv -lpvCa -Ica -ICom \
-Iposix4 -Ipthread -Ithread -Isocket -Insl -Im

The main program generated by ttracompiler option is very simple. Here it is:

/* Main program */
#include "osiThread.h"
#include "errlog.h"
#include "taskwd.h"

int main(int argc,char *argv([]) {
char *macro_def = (argc>1)?argv[1]:NULL;
threadinit();
errloglnit(0);
taskwdlnit();
return seq((void *)&demo, macro_def, 0);

}
The arguments are essentially the same as those takendaytheutine.

3.8 Using makeBaseApp

The sequencer is distributed as an EPICS R&a#keBaseApp application. This section
doesn’t describe how to install and build the sequencer itself (for that, refer to Chapter 8:
on page 59); instead, it describes how to build a sequencer application.

Makefile Assume a sequencer demo.st . This sequencer will use the CA message system. It is
to be linked into a Unix program calletEmo and a VxWorks object file calledemo.o .
Also assume that the sequencer includes and libraries can be accesSé&d)and that
SEQ_LIB is defined; see Section 8.7 on page 63). The followifakefile does the
job.
TOP = ../..
include $(TOP)/configure/CONFIG
SNCFLAGS = +m
SEQS = demo
PROD = $(SEQS)
OBJS_vxWorks = $(SEQS)

22 Compiling a State Program Document Revision: 1

Chapter 3: Compiling a State Program
Using makeBaseApp

PROD_LIBS += seq pv pvCa ca Com
seq_DIR = $(SEQ_LIB)

include $(TOP)/configure/RULES

Make output When | build with the abov#akefile on my Solaris machine with a Power PC 10C |
get the following output:

% gmake

gnumake -C O.solaris-sparc -f ../Makefile TOP=../../.. \
T_A=solaris-sparc install

preprocessing demo.st

lusr/local/bin/gcc -x ¢ -E -D_POSIX_C_SOURCE=199506L \
-D_POSIX_THREADS -D_REENTRANT -D__EXTENSIONS__\
-DnoExceptionsFromCXX -DOSITHREAD_USE_DEFAULT_STACK\\
-DUNIX -I. -I/lhome/wlupton/epics/seg/include \
-l../../../include/os/solaris -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/solaris \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. ../demo.st > demo.i

converting demo.i

/home/wlupton/epics/seq/bin/solaris-sparc/snc +m demo.i

/usr/local/bin/gcc -ansi -pedantic -D_POSIX_C_SOURCE=199506L \
-D_POSIX_THREADS -D_REENTRANT -D__EXTENSIONS__\
-DnoExceptionsFromCXX -DOSITHREAD_USE_DEFAULT_STACK\
-DUNIX -0O3 -g -g -Wall -1. -I/home/wlupton/epics/seq/include \
-I../../../linclude/os/solaris -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/solaris \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. -c demo.c

/usr/local/bin/g++ -ansi -pedantic -Wtraditional -o demo \
-L/home/wlupton/epics/anl/base/lib/solaris-sparc/ \
-L/home/wlupton/epics/seq/lib/solaris-sparc/ \
-R/home/wlupton/epics/anl/base/lib/solaris-sparc/ \
-R/home/wlupton/epics/seq/lib/solaris-sparc/ demo.o \
-Iseq -Ipv -IpvCa -Ica -ICom -lposix4 -Ipthread -lthread \
-Isocket -Insl -Im

Installing binary ../../../bin/solaris-sparc/demo

gnumake -C O.vxWorks-ppc604 -f ../Makefile TOP=../../..\
T_A=vxWorks-ppc604 install

preprocessing demo.st

GCC_EXEC_PREFIX=/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \
Jusr/local/vw/t2/host/sun4-solaris2/bin/ccppc -nostdinc -x ¢ \
-E -nostdinc -DnoExceptionsFromCXX -DCPU=PPC604 -DvxWorks -I. \
-I/home/wlupton/epics/seq/include \
-I../..1..[include/os/vxWorks -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/vxWorks \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. \
-l/usr/local/vw/t2/target/h ../demo.st > demo.i

converting demo.i

EPICS Release: R3.14 Compiling a State Program 23

Chapter 3: Compiling a State Program
Using makeBaseApp

/home/wlupton/epics/seq/bin/solaris-sparc/snc +m demo.i
GCC_EXEC_PREFIX=/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \
Jusr/local/vw/t2/host/sun4-solaris2/bin/ccppc -nostdinc -ansi \

-pedantic -B/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \

-nostdinc -DnoExceptionsFromCXX -DCPU=PPC604 -DvxWorks -O2 -g \
-Wall -mcpu=604 -mlongcall -fno-builtin -I. \
-I/home/wlupton/epics/seq/include \
-l..1../..Jinclude/os/vxWorks -I../../..[include \
-I/home/wlupton/epics/anl/base/include/os/vxWorks \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. \
-l/usr/local/vw/t2/target/h -c demo.c

Installing binary ../../../bin/lvxWorks-ppc604/demo.o

24 Compiling a State Program Document Revision: 1

Chapter 4. Using the Run Time Sequencer

In the previous chapter you learned how to create and compile some simple state
programs. In this chapter you will be introduced to the run-time sequencer so that you can
execute your state program.

4.1 VxWorks-specific instructions

Note that the latest sequencer version has not, at the time of writing, been fully checked
out under VxWorks.

Loading the The sequencer is unbundled from EPICS base and so must be loaded separately. The

sequencer sequencer is loaded into an IOC by the VxWorks loader from object files on the UNIX file
system. Assuming the 10C’s working directory is set properly, the following command
will load the sequencer object code:

Id < pvLibrary
Id < seqLibrary

Loading a State State programs are loaded into an IOC by the VxWorks loader from object files on the
Program UNIX file system. Assuming the IOC’s working directory is set properly, the following
command will load the object file “example.o”:

Id < example.o

This can be typed in from the console or put into a script file, such as the VxWorks start-up
file.

Executing the State Let's assume that the program name (fromphegram statement in the state program)
Program is “level_check”. Then to execute the program under VxWorks you would use the
following command:

seq &level_check

EPICS Release: R3.14 Using the Run Time Sequencer 25

Chapter 4: Using the Run Time Sequencer

Unix-specific instructions

Examining the State
Program

Stopping the State
Program Tasks

This will create one task for each state set in the program. The task ID of the first state set
task will be displayed. You can find out which tasks are running by using the VxWorks
“i ” command.

You can examine the state program by typing:
seqgShow level_check

This will display information about each state setg(state set names, current state,
previous state). You can display information about the control system variables associated
with this state program by typing either of:

segChanShow level_check
seqChanShow level_check, “DTL_6:CM_2:ail”
seqChanShow level_check, “-”

You can display information about monitor queues by typing:
segQueueShow level_check

The first parameter teeqShow, seqChanShow andseqQueueShow is either the task
identifier (tid) or theunquotedtask name of the state program task. If the state program

has more than one tid or name, then any one of these can be used. The second parameter is
a valid channel name, of * to show only those channels which are disconnected;br “

to show only those channels which are connected. HegChanShow and
seqQueueShow utilities will prompt for input after showing the first or the specified
channel; entexEnter> or a signed number to view more channels or queues; egtdo”

quit.

If you wish to see the task names, state set names, and task identifiea§ &iate
programs type:

seqShow

You can no longer directly delete state program tasks. Instead, you misstqs®p .
seqStop level_check

The parameter teeqStop is either the task identifier (tid) or thenquotedask name of
the state program task.

A state program can no longer delete itself.

4.2 Unix-specific instructions

Executing the State
Program

Examining the state
program

Under Unix, you execute the state program directly. You might type the following:
level_check

Once the state set threads have been created, the console remains active and you can type
commands as described below.

The following commands can be issued under Unix @itd obtain the list):

commands (abbreviable):
i - show all threads

26

Using the Run Time Sequencer Document Revision: 1

Chapter 4: Using the Run Time Sequencer
Specifying Run-Time Parameters

Stopping the State
Program Tasks

all - show all sequencers
channels - show all channels
+ - show conn. channels

- - show disc. channels
queues - show gqueues
statesets - show state-sets
<EOF> - exit

As you see, all commands can be abbreviated to a single character.

A state program may be killed by sending iIS866 TERM(Ctrl-C) signal (this is an untidy
exit, but who cares?) or by entering aEOF> (Ctrl-D) character. The latter calls
seqStop and is a tidy exit.

4.3 Specifying Run-Time Parameters

VxWorks

Unix

Access within
program

You can specify run-time parameters to the sequencer. Parameters serve three purposes:

1. macro substitution in process variable names,
2. for use by your state program, and
3. as special parameters to the sequencer.

You can pass parameters to your state program at run time by including them in a string
with the following format:

“paramZXvaluel param2value2 ..”

This same format can be used in frgram statement’s parameter list (Section 5.2 on
page 29). Parameters specified on the command-line override those specified in the
program statement.

For example, if we wish to specify the value of the macro “unit” in the example in the last
chapter, we would execute the program with the following command:

seq &level_check, “unit=DTL_6:CM_2"

This works just the same under Unix. The above example becomes:
level_check “unit=DTL_6:CM_2"

Parameters can be accessed by your program with the furmtcialueGet , which is
described in Section on page 38. The following built-in parameters have special meaning
to the sequencer:

debug = level
Sets a logging levelevel-1is passed on to the PV API. Can be used in user code.
logfile = filename

This parameter specifies the name of the logging file for the run-time tasks associated with
the state program. If none is specified then all log messages are wrdtdaub .

name = thread_name

EPICS Release: R3.14

Using the Run Time Sequencer 27

Chapter 4: Using the Run Time Sequencer
Sequencer Logging

Normally the thread names are derived from the program name. This parameter specifies
an alternative base name for the run-time threads.

priority = task_priority

This parameter specifies the initial task priority when the tasks are created. The value
task_prioritymust be an integer between 0 and 99 (it’s ignored under Unix).

stack = stack_size

This parameter specifies the stack size in bytes (its use is deprecated, and it is in any case
ignored under Unix).

4.4 Sequencer Logging

The sequencer logs various information that could help a user determine the health of a
state program. Logging uses tkerlogPrintf function and will be directed to the

IOC log file if the IOC log facility has been initialized. Under VxWorks this is done
automatically but under Unix it must be done by the programmer. This can be done in the
main program (if you are writing it yourself) or in the entry handler, which is executed in
the context of the first state set before the remaining state sets have been created. For
example:

entry {

#ifdef UNIX

%%#include "logClient.h"
iocLoglnit();

#endif

}

The programmer may log information usiegrlogPrintf directly or else by using
the seqLog function. By default,seqLog output goes tostdout , but it may be
directed to any file by specifying thagfile parameter as described above.

4.5 What Triggers an Event?

There are five types of sequencer event:

* a control system variable monitor is posted

» an asynchronoysvGet orpvPut completes

» atime delay elapses

» an event flag is set or cleared

 a control system variable connects or disconnects

When one of these events occur, the sequencer executes the apprepeatstatements

based on the current states and the particular event or events. Whenever a new state is
entered, the correspondinghen statements for that state are executed immediately,
regardless of the occurrence of any of the above events.

Prior to Version 1.8 of the sequencer, event flags were cleared afttiea statement
executed. Currently, event flags must be cleared with eigdf€éestAndClear or
efClear , unlessthee compiler option was chosen.

28 Using the Run Time Sequencer Document Revision: 1

Chapter 5. State Notation Language Syntax

This chapter formalizes the state notation language syntax using a variant of BNF
(Backus-Naur Form).

5.1 Typographical conventions

The idea is that the meaning will be clear without explanation. However, here are some
explanatory notes.

words and symbols iteletype font are to be taken literally (“terminals”)

words in bold italics are syntactic terms which will be defined below
(“nonterminals”), except in a few cases where the meaning is obvious

where the name of a nonterminal is enclosed in square brackets, that term is
optional

where a term is followed by an ellipsis], it may optionally be repeated (so if the
term was not optional this means that there can be one or more instances of it; if the
term was optional this means that there can be zero or more instances of it)

where a term is followed by a separatetd.a comma) and an ellipsis, it is to be
understood that the separator will separate each repeated instance of the term

5.2 State Program

program program program_namgq (" parameter_list)] ;
[entry_handler]
definition...
state_set...
[exit_handler]

EPICS Release: R3.14

State Notation Language Syntax 29

Chapter 5: State Notation Language Syntax

Definitions

program_name

parameter_list

definition

entry_handler

The name of the program. This is used as the name of the global variable which contains
or points to all the state program data structures (the address of this global variable is
passed to theeq function when creating the run-time sequencer). It is also used as the
base for the state set thread names unless overridden viatheparameter (Section 4.3

on page 27).

A list of comma-separated parameters in the same form as they are specified on the
command line (Section 4.3 on page 27). Command-line parameters override those
specified here.

See Section 5.3 on page 30.

A state program may specify entry code to run prior to state set thread creation. This is run
in the context of the first state set thread, before the other threads are created and is
specified as follows:

entry {
[statement]...
}

The entry code consists of zero or more statements as described in Section 5.5 on page 34.
However, no control system variable access functions may be called within the entry code.

This handler should not be confused with the entry block of a state, which has the same
syntax, but is executed at each transition to a new state.

state_set See Section 5.4 on page 32.

exit_handler When a state program is stopped waqStop , all state set threads within the state
program are deleted. The state program may specify exit code to run prior to thread
deletion. This is run in the context of the first state set thread and is specified as follows:
exit {

[statement]...
}
The exit code consists of zero or more statements as described in Section 5.5 on page 34.
However, no control system variable access functions may be called within the exit code.
This handler should not be confused with the exit block of a state, which has the same
syntax, but is executed at each transition from a state to the next state.
5.3 Definitions
definition definition=decl_stmt | assign_stmt | monitor_stmt | sync_stmt | syncq_stmt |
compiler_option_stmt

decl_stmt Variable declarations are similar to C except that the types are limited to the following,
only scalar initialization is permitted, and only one variable may be declared per
declaration statement.
char variable_name

30 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax

assign_stmt

monitor_stmt

Definitions
short variable_name
int variable_name
long variable_name
float variable_name
double variable_name
string variable_name
evflag event_flag_name

Type string produces an array of char with length equal to the constant
MAX_STRING_SIZE which is defined (as 40) in one of the included header files.
Unsigned types and pointer types may also be specified. For example:

unsigned short *variable_name

Variables may also be declared as arrays.

char variable_nam¢array_lengtH;
short variable_name¢array_lengtH;
int variable_name¢array_lengtH;
long variable_nam¢array_lengtH;
float variable_nam¢array_lengtH;
double variable_name¢array_lengtH;
char variable_namé¢array_lengtH[array_length;
short variable_namé¢array_lengtH[array_length;
int variable_namé¢array_lengtH[array_length;
long variable_namé¢array_lengtH[array_length;
float variable_namé¢array_lengtH[array_length;
double variable_namé¢array_lengtH[array_length;

Note that arrays of strings and event flags are not implemented.

Once a variable is declared, it may be assigned to a control system variable. Thereafter,
that variable is used to interact with the underlying control system. The following are all

variations on assignment (note that thee ™is optional):

assign variable_name[to] “ variable_namé;

assign variable_namgindex] [to] “ variable_namé;
assign variable_name[to] {“ variable_namé& ..} ;

A control system variable name may contain one or more macro names enclosed in braces,
as in ‘{sysHsub}voltage ". Macros are named following the same rules as C
language variables.

For control system variables declared as arrays, the requested count is the length of the
array or the native count for the underlying variable, whichever is smaller. The native
count is determined when the initial connection is established. Pointer types may not be
assigned to control system variables.

To make the state program event-driven, input variables can be monitored. Monitored
variables are automatically updated with the current value of the underlying control
system variable (the variable must first be assigned to a control system variable).

monitor variable_name
monitor variable_namgindex];

EPICS Release: R3.14

State Notation Language Syntax 31

Chapter 5: State Notation Language Syntax

State Sets

sync_stmt

syncq_stmt

compiler_option_stmt

An event flag can be associated with an SNL variable (which may be an array, and thus
associated with several control system variables). When a monitor is posted on any of the
associated control system variables, the corresponding event flag is set (even if it was
already set). Note that th&"” is optional.

sync variable_name[to] event flag_name
sync variable_namgindex] [to] event_flag_name

An event flag can be associated with a monitor queue which, in turn, is associated with an
SNL variable (which may be an array, and thus associated with several control system
variables). The queue size defaults to 100 but can be overridden on a per-queue basis.
When a monitor is posted on any of the associated control system variables, the variable’s
value is written to the end of the queue and the corresponding event flag is set. If the queue
is already full, the last entry is overwritten. Only scalar items can be accommodated in the
gueue (if the variable is array-valued, only the first item will be saved). pu@etQ

function reads items from the queue.

syncQ variable_name[to] event flag_name [queue_size]
syncQ variable_namégindex] [to] event flag_name [queue_size]

Note that the square brackets arounal * and queue_sizéndicate optional items rather
than literal square brackets.

A compiler option is specified as follows:
option compiler_option_namg

Possible compiler options are given in Section 3.4 on page 20, and must includé tre “
“- " sign. Example:

option +r; [* make code reentrant */

5.4 State Sets

state_set

state_set_name

ss state_set_namg
state_def...
}

The name of the state set. The normal C variable naming rules apply.

state_def state state_namd
[state_option_stmt]...
[entry_action]...
event_action...
[exit_action]...
}
state_name The name of the state. The normal C variable naming rules apply. State names need only
be unique within the state set.. each state set within a state program could have a
start state).
32 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
State Sets

state_option_stmt

entry_action

event_action

new_state

exit_action

A state option is specified as follows:
option state_option_name

Currently there are three allowable options, e and x. The option string must be
preceded by at+” or “- ", for instanceoption -te

The options are:

-t Don'’t reset the time specifying when the state was entered if coming from the same
state. When this option is used thelay function will return whether the given
time delay has elapsed from the moment the current state was entered from a
different state, rather than from when it was entered for the current iteration.

-e Executeentry blocks even if the previous state was the same as the current state.
-X Executeexit blocks even if the next state is the same as the current state.

+t , +e and+x are also permitted, though™ is interpreted as “perform the default action
for this option”. For instanception +tx would have the same effect as if no option
specification were given fdr andx, so its use is only documentary. Note that more than
one option line is allowed, and that syntax must be used to specify bdtlarid “- "
options, for example:

state low {
option -e; /* Do entry{} every time ... */
option +x; /* but only do exit{} when really leaving */

entry { ..}
;e.>.<it { .o}

}

entry {
[statement]...

}

entry blocks are executed when the state is entered. There can be more than one of
them.

when (expression {
[statement]...
} state new_state

The name of the new state to enter. This can be the current state.

exit {
[statement]...
}

exit blocks are executed when the state is left. See the opt®nand-x above for
more details about controlling this behavior. Note that the statements in all entry blocks of
a state are executed before any of the expressiavisein conditions are evaluated.

EPICS Release: R3.14

State Notation Language Syntax 33

Chapter 5: State Notation Language Syntax

Statements and Expressions

5.5 Statements and Expressions

statement { [statement]..} |
expression |
if (expressior) statement |
else statement |
while (expression) statement |
for (expression expression expressiorn) statement |
break;
As can be seen, most C statements are supported. Strangely, some are missing (but are not
hard to add should the need arise).
expression expression expression... |
expression binop expression |
expression asgnop expression |
unop expression |
++ expression |
-- expression |
expression++ |
expression- |
number |
char_const |
string |
name |
name(expression |
expressior expressior] |
(expression
binop Sl == <= < [&& << >] [[&]%]?] |. |->
These are the usual C binary operators (with the C precendences) with the addition of the
“n ot Y " and “-> " operators. These can be treated as binary operators because SNL
makes no use of the semantics of ternary expressions and structure member access (a side-
effect that you may notice is that the state notation compiler will warn that structure tags
are unused variables).
asgnop =|+=|= [&=I= |/= |*= |%=| <<= |>>= | =
These are the usual C assignment operators.
unop +-]* & |~
These are the usual C unary operators.
number The usual C syntax is supported for numbers, character constants, strings and names. Note
char_const that, taken together,
string : .
expression expression...
name .
name(expression
imply that function calls are permitted (syntactically, the argument list is a comma-
separated expression).
34 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
Built-in Functions

5.6 Built-in Functions

delay

pvPut

pvPutComplete

The following special functions are built into the SNL. In most cases the state notation
compiler performs some special interpretation of the parameters to these functions.
Therefore, some are either not available through escaped C code or their use in escaped C
code is subject to special rules.

The termvariable_namerefers to any SNL variable that is assigned to a control system
variable (or, if it's an array, variables). When using such a variable as a function argument,
the function is automatically given access to the details of the underlying control system
variable.

Several of these functions are primarily intended to be called only fitwen clauses or
only from action code. However, unlike in previous versions, it is safe to call any function
both inwhen clauses and in action code.

int function returns should be assumed to bpv&tat error code unless otherwise
spacified.

int delay(double delay_in_seconds

The delay function returnERUEIf the specified time has elapsed since entering the state.
It should be used only withinvahen expression.

The -t state option (“state_option_stmt” on page 33) controls whether the delay is
measured from when the current state was entered from a different-stter(from any
state, including itself#t , the default)

int pvPut(variable_nameg
int pvPut(variable_name SYNQ
int pvPut(variable_name ASYNQ

This function puts (or writes) the value of an SNL variable to the underlying control
system variable. The function returns the status from the PV laygrgvStatOK for
success).

By default,pvPut does not wait for the put to be complete; completion must be inferred
by other means. The option8lYNCargument causes it to block on completion with a
hard-coded timeout of 10s. The optionABYNCargument allows completion to be
checked via a subsequent calpidPutComplete (typically in awhen clause).

Note that, when using channel access, MNCand ASYNCarguments result in use of
ca_put_callback ; if neither optional argument is specifiezh_put is called as with
previous versions.

int pvPutComplete(variable_namég

int pvPutComplete(array_name

int pvPutComplete(array_namelong any)

int pvPutComplete(array_namelong any,long* pCompletg

This function returnd’ RUEIf the last put of this control system variable has completed.
This call is appropriate only gvPut s optionalASYNCargument was used.

The first form is appropriate when the SNL variable is a scalar. However, it can also be an
array (each of whose elements may be assigned to a different control system variable). In
this case, the single argument form retuff®UEIf the last puts of all the elements of the

EPICS Release: R3.14

State Notation Language Syntax 35

Chapter 5: State Notation Language Syntax

Built-in Functions

pvGet

pvGetComplete

pvGetQ

pvFreeQ

pvMonitor

array have completed (the missing arguments are impliQigyd NULL respectively). If
any is TRUE then the function returnERUEIf any put has completed since the last call.
If pComplete is non-NULL, it should be dong array of the same length as the SNL
variable and its elements will be set T&RUEIf and only if the corresponding put has
completed.

int pvGet(variable_namég
int pvGet(variable_name SYNQ
int pvGet(variable_name ASYNQ

This function gets (or reads) the value of an SNL variable from the underlying control
system variable. The function returns the status from the PV laygrvStatOK for
success). By default, the state set will block until the read operation is complete with a
hard-coded timeout of 10s. The asynchronotss) compile option can be used to prevent
this, in which case completion can be checked via a subsequent palB&tComplete
(typically in awhen clause).

The optionalSYNCandASYNCarguments override the compile opti@)YNCblocks and
so gives default behavior ifa was not specifiedASYNCdoesn't block and so gives
default behavior ifra was specified.

int pvGetComplete(variable_namég

This function returnd RUEIf the last get of this control system variable has completed,
i.e. the value in the variable is current. This call is appropriate only if the asynchronous
(+a) compile option is specified pvGet 's optionalASYNCargument was used.

Unlike pvPutComplete , pvGetComplete doesn't support arrays.

int pvGetQ(variable_namg
int pvGetQ(array_name

This function removes the oldest value from a SNL variable’s monitor queue (the variable
should have been associated with a queue and an event flag g\it@ statement) and
updates the corresponding SNL variable. Despite its name, this function is really closer to
efTestAndClear than it is topvGet . It returnsTRUEIf the queue was not empty.

If the SNL variable is an array then the behavior is the same regardless of whether the
array name or an array element name is specified. This is because a single queue is
associated with the entire array.

void pvFreeQ(variable_nameg

This function deletes all entries from an SNL variable’s queue and clears the associated
event flag (the variable should have been associated with a queue and an event flag via the
syncQ statement).

As with pvGetQ, if the SNL variable is an array then the behavior is the same regardless
of whether the array name or an array element name is specified.

int pvMonitor(variable_namég

This function initiates a monitor on the underlying control system variable.

36

State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
Built-in Functions

pvStopMonitor

pvFlush

pvCount

pvStatus

pvSeverity

pvTimeStamp

pvAssign

pvAssigned

pvConnected

pvindex

int pvStopMonitor(variable_name

This function terminates a monitor on the underlying control system variable.

void pvFlush()

This function causes the PV layer to flush its input-output buffer. It just might be needed if
performing asynchronous operationghin an action block (note that the buffer is always
flushed on exit from an action block).

int pvCount(variable_nameg

This function returns the element count associated with the control system variable.

pvStat pvStatus(variable_namé

This function returns the current alarm status for the control system variatde (
pvStatHIHI ; defined inpvAlarm.h). The status and severity are only valid after
either apvGet call has completed or a monitor has been delivered.

pvSevr pvSeverity(variable_name

This function returns the current alarm severigyg(pvSevrMAJOR). The notes above
apply

TS_STAMP pvTimeStamp(variable_nameg

This function returns the time stamp for the lpstGet or monitor of this variableThe
compiler does recognize type TS_STAMP. Therefore, variable declarations for this type
should be in escaped C code. This will generate a compiler warning, which can be
ignored.

int pvAssign(variable_name control_system_variable name

This function assigns or re-assigned the SNL variablariable name to
control_system_variable_namdf control_system_variable_nami& an empty string
thenvariable_namds de-assigned (not associated with any control system variable).

int pvAssigned(variable_namé

This function returnd’ RUEIf the SNL variable is currently assigned to a control system
variable.

int pvConnected(variable_nameg

This function returnsTRUE if the underlying control system variable is currently
connected.

int pvindex(variable_namé

This function returns the index associated with a control system variable. See “User
Functions within the State Program” on page 39.

EPICS Release: R3.14

State Notation Language Syntax 37

Chapter 5: State Notation Language Syntax

C Compatibility Features

pvChannelCount

pvAssignCount

pvConnectCount

efSet

efTest

efClear

efTestAndClear

macValueGet

int pvChannelCount()

This function returns the total number of control system variables associated with the state
program (the term “channel” is a carry-over from the days when the only support message
system was channel access).

int pvAssignCount()

This function returns the total number of SNL variables in this program that are assigned
to underlying control system variables. Note: if all SNL variables are assigned then the
following expression iIIRUE

pvAssignCount() == pvChannelCount()

Each element of an SNL array counts as variable for the purpogeassignCount

int pvConnectCount()

This function returns the total number of underlying control system variables that are
connected. Note: if all variables are connected then the following expres$RbES

pvConnectCount() == pvChannelCount()

void efSet(event flag_namg

This function sets the event flag and causes the execution efliba statements for all
state sets that are pending on this event flag.

int efTest(event_flag_name

This function return§ RUEIf the event flag was set.

int efClear(event_flag_namg

This function clears the event flag and causes the execution aftbe statements for all
state sets that are pending on this event flag.

int efTestAndClear(event_flag_namge

This function clears the event flag and retuff®UJEif the event flag was set. It is intended
for use within avhen clause.

char* macValueGet(char * macro_nameg

This function returns a pointer to a string that is the value for the specified macro name. If
the macro does not exist, it retutdislLL

5.7 C Compatibility Features

Comments

C-style comments may be placed anywhere in the state program.

38

State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
C Compatibility Features

Escape to C Code

User Functions within
the State Program

Calling pvGet etc.
from C

Variable Extent

Because the SNL does not support the full C language, C code may be escaped in the
program. The escaped code is not compiled by SNC, but is passed the C compiler. There
are two escape methods allowed:

1. Any code betweeth%and the next newline character is escaped. Example:
%% for (i=0; i < NVAL; i++) {
2. Any code betweet{ and}% is escaped. Example:

%{

extern float smooth();

extern LOGICAL accelerator_mode;
1%

If you are using the C pre-processor prior to compiling véitit , and you wish to defer
interpretation of a preprocessor directivé”(statement), then you should use the form:

%%f#include <ioLib.h>
%%f#include <abcLib.h>

Any variable declared in escaped C code and used in SNL code will be flagged with a
warning message by the SNC. However, it will be passed on to the C compiler correctly.

The last state set may be followed by C code, usually containing one or more user-
supplied functions. For example:

program example { .}
/* last SNL statement */
%{
LOCAL float smooth (pArray, numElem)
{..}
1%
There is little reason to do this, since a state program can of course be linked against C
libraries.

The built-in SNL functions such apvGet cannot be directly used in user-supplied
functions. However, most of the built-in functions leaat C language equivalent, which
begin with the prefixseq_(e.g.pvGet becomeseq_pvGe}. These C functions must pass

a parameter identifying the calling state program, and if a control system variable name is
required, theindex of that variable must be supplied. This index is obtained via the
pvindex function. Furthermore, if the code is complied with the option, the database
variables must be referenced as a structure element as described in “Variable Modification
for Reentrant Option” on page 40 (this isn’'t a problem if individual SNL variables are
passed as parameters to C code, because the compiler will do the work). Examination of
the intermediate C code that the compiler produces will indicate how to use the built-in
functions and database variables.

All variables declared in a state program are made static (non-global) in the C file, and
thus are not accessible outside the state program module.

Local variables can be escaped and declared witlfien clauses (this will result in a
“variable used but not declared” warning from the compiler; ignore it). However, when
using thetr option, the same name cannot be used for SNL and local variables (because
the compiler is not clever enough to realize that use of the local variable is intended; see
“Variable Modification for Reentrant Option” on page 40). For example:

EPICS Release: R3.14

State Notation Language Syntax 39

Chapter 5: State Notation Language Syntax
C Compatibility Features

when (pvPutComplete(init, TRUE, done)) {
%% long i;
printf("init commands not all done:");
for (i=0;i<N;i++)
printf(" %ld", done[i]);
printf("\n");
} state active

Variable Modification If the reentrant option+r) is specified to SNC then all variables are made part of a
for Reentrant Option structure. Suppose we have the following declarations in the SNL:

int swi;
float v5;
short wf2[1024];

The C file will contain the following declaration:

struct UserVar {

int swi;
float v5;
short wf2[1025];

h

The sequencer allocates the structure area at run time and passes a pointer to this structure
into the state program. This structure has the following type:

struct UserVar *pVar,
Reference to variabewn1 is made as:
pVar->swl

This conversion is automatically performed by the SNC for all SNL statements, but you
will have to handle escaped C code yourself.

40 State Notation Language Syntax Document Revision: 1

Chapter 6: The PV (Process Variable) API

This chapter describes the PV API. It is intended for those who would like to add support
for new message systems. It need not be read by those who want to write sequences using
message systems that are already supported.

6.1

Introduction

The PV (Process Variable) API was introduced at version 2.0 in order to hide the details of
the underlying message system from the sequencer code. Previously, the sequencer code
(i.e. the modules implementing the sequencer run-time support, not the user-written
sequences) called CA routines directly. Now it calls PV routines, which in turn call
routines of the underlying message system. This allows new message systems to be
supported without changing sequencer code.

6.2 Rationale

Several EPICS tools support both CA and CDEV. They do so in ad hoc ways. For
examplemedmuses arMEDM_CDEWMacro and hamedmCAandmedmCdevmodules,
whereasalh has aralCaCdev module that implements the same interface asatBé\
module.

The PV API is an attempt at solving the same problem but in a way that is independent of
the tool to which it is being applied. It should be possible to use the PV API (maybe with
some backwards-compatible extensions) witedm alh and other CA-based tools.
Having done that, supporting another message system at the PV level automatically
supports it for all the tools that use the PV API.

Doesn't this sound rather like the problem that CDEV is solving? In a way, but PV is a
pragmatic solution to a specific problem. The PV API is very close in concept to the CA
API and is designed to plug in to a CA-based tool with minimal disruption. Why not use
the CA API and implement it for other message systems? That could have been done, but
would have made the PV API dependent on the EPWBSaccess.h definitions
(currently it is dependent only on the EPICS OSI layer).

EPICS Release: R3.14

The PV (Process Variable) API 41

Chapter 6: The PV (Process Variable) API

A tour of the API

In any case, a new APl was defined and the sequencer code was converted to use it.

6.3 A tour of the API

Overview

Simple C++ PV
program (comments
and error handling
have been removed)

The public interface is defined in the fijgv.h , which defines various types such as
pvStat , pvSevr , pvValue , pvConnFunc andpvEventFunc ,then defines abstract
pvSystem , pvVariable andpvCallback classes. Finally it defines a C API.

The file pv.cc implements generic methods (mostly constructors and destructors) and
the C API.

Each supported message systéiiX creates gpvXxx.h file that definesxxxSystem
(extendingpvSystem) and xxxVariable (extendingpvVariable) classes, and a
pvXxx.cc file that contains the implementationsx@kSystem andxxxVariable

Currently-supported message systems are CA and a Keck-specific one called KTL. The
CA layer is very thin pvCa.h is 104 lines angpvCa.cc is 818 lines; both these figures
include comments).

The file pvNew.cc implements anewPvSystem function that takes a system name
argument é.g.“ca”), calls the appropriatexxSystem constructor, and returns it (as a
pvSystem pointer). It would be good to change it to use dynamically-loaded libraries, in
which case there would be no direct dependence opthébrary on any of thepvXxx
libraries €.f.the way CDEV creatasdevService objects).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pv.h"

void event(void *obj, pvType type, int count, pvValue *val,
void *arg, pvStat stat) {
pvVariable *var = (pvVariable *) obj;
printf("event: %s=%g\n", var->getName(), val->doubleVal[0]);

}

int main(int argc, char *argv[]) {
const char *sysNam = (argc > 1) ? argv[1] : "ca";
const char *varNam = (argc > 2) ? argv[2] : "demo:voltage";

pvSystem *sys = newPvSystem(sysNam);
pvVariable *var = sys->newVariable(varNam);

var->monitorOn(pvTypeDOUBLE, 1, event);
sys->pend(10, TRUE);

delete var;
delete sys;
return O;

42

The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

The equivalent #include <stdio.h>
i #include <stdlib.h>
erglgram using the C #include <string.h>

#include "pv.h"

void event(void *var, pvType type, int count, pvValue *val,
void *arg, pvStat stat) {
printf("event: %s=%g\n", pvVarGetName(var),
val->doubleVal[0]);
}

int main(int argc, char *argv[]) {
const char *sysNam = (argc > 1) ? argv[1] : "ca";
const char *varNam = (‘argc > 2) ? argv[2] : "demo:voltage";
void *sys;
void *var;

pvSysCreate(sysNam, 0, &sys);
pvVarCreate(sys, varNam, NULL, NULL, 0, &var);

pvVarMonitorOn(var, pvTypeDOUBLE, 1, event, NULL, NULL);
pvSysPend(sys, 10, TRUE);

pvVarDestroy(var);

pvSysDestroy(sys);
return O;

6.4 The API in More Detall

We will look at the contents gbv.h (andpvAlarm.h) in more detail and will specify
the constraints that must be met by underlying message systems.

6.4.1 Type definitions pv.h andpvAlarm.h define various types, described in the following sections.

Status typedef enum {
pvStatOK =0,
pvStatERROR =-1,
pvStatDISCONN =-2,
pvStatREAD =1,
pvStatWRITE =2,

pvStatREAD_ACCESS = 20,
pvStatWRITE_ACCESS =21
} pvStat;

The negative codes correspond to the few CA status codes that were used in the sequencer.
The positive codes correspond to EPICS STAT values.

Severity typedef enum {

EPICS Release: R3.14 The PV (Process Variable) API 43

Chapter 6: The PV (Process Variable) API
The API in More Detail

pvSevrOK =0,
pvSeviERROR =-1,

pvSevriNONE
pvSevrMINOR =
pvSevriMAJOR =
pvSevrINVALID =
} pvSevr;

0,

1,
2,
3
These allow easy mapping of EPICS severities.

Data Types typedef enum {
pvTypeERROR =-1,
pvTypeCHAR =0,
pvTypeSHORT =1,
pvTypeLONG
pvTypeFLOAT ,
pvTypeDOUBLE =4,
pvTypeSTRING =5,
pvTypeTIME_CHAR =6,
pvTypeTIME_SHORT =7,
pvTypeTIME_LONG =8,
pvTypeTIME_FLOAT =9,
pvTypeTIME_DOUBLE = 10,
pvTypeTIME_STRING =11

} pvType;

2,
3

#define PV_SIMPLE(_type) ((_type) <= pvTypeSTRING)

Only the types required by the sequencer are supported, namely simple and “time” types.
The “error” type is used to indicate an error in a routine that returpsType as its
result.

Data Values typedef char pvChar;
typedef short pvShort;

typedef long pvLong;

typedef float pvFloat;

typedef double pvDouble;

typedef char pvString[256]; /* use sizeof(pvString) */

#define PV_TIME_XXX(_type) \
typedef struct {\
pvStat status; \
pvSevr severity; \
TS_STAMP stamp; \
pv##_type value[l]; \
} pvTime##_type

PV_TIME_XXX(Char);
PV_TIME_XXX(Short);
PV_TIME_XXX(Long);
PV_TIME_XXX(Float);
PV_TIME_XXX(Double);
PV_TIME_XXX(String);

typedef union {
pvChar charVval[1];

44 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

Callbacks

pvShort shortVal[1];
pvLong longVal[1];
pvFloat floatVal[1];
pvDouble doubleVal[1];
pvString stringVal[1];
pvTimeChar timeCharVal;
pvTimeShort timeShortVal;
pvTimeLong timeLongVal;
pvTimeFloat timeFloatVal,
pvTimeDouble timeDoubleVal;
pvTimeString timeStringVal,
} pvValue;

#define PV_VALPTR(_type,_value) \
((PV_SIMPLE(type) 2\
(void *) (_value) :\
(void *) (&_value->timeCharVal.value)))
pvValue is equivalent todb_access val and, like it, is not self-describing
(remember, the idea is that the PV layer is a drop-in replacement for CA).

Obviously, the introduction gbvValue means that values must be converted between it
and the message system’s internal value representation. This is a performance hit but one
that was deemed worthwhile given that there is currently no appropriate “neutral”
(message system independent) value representation. Once the replacement for GDD is
available, it will maybe be used in preferencewwalue .

typedef void (*pvConnFunc)(void *var, int connected);

typedef void (*pvEventFunc)(void *var, pvType type, int count,
pvValue *value, void *arg, pvStat status);

In both cases, thear argument is a pointer to th@/Variable that caused the event. It

is passed aswid* so that the same function signature can be used for both C and C++.
In C, it would be passed to one of tpgVarXxx routines; in C++ it would be cast to a
pvVariable*

pvConnFunc is used to notify the application that a control system variable has
connected or disconnected

» connected is O for disconnect and 1 for connect

pvEventFunc is used to notify an application that a get or put has completed, or that a
monitor has been delivered

e type ,count andarg come from the request
» value is of typetype and containsount elements
« it may be NULL on put completion (the application should check)

« it might also be NULL ifstatus indicates failure (the application should
check)

* it is filled with zeroes if the control system variable has fewer tbannt
elements

» status comes from the underlying message system
* itis converted to @vStat

EPICS Release: R3.14

The PV (Process Variable) API 45

Chapter 6: The PV (Process Variable) API

The API in More Detail

6.4.2 pvSystem Class pvSystem is an abstract class that must be extended by specific message systems. An

Variable Creation

Event Handling

Locking

Debugging

Error Reporting

6.4.3 pvVariable
Class

Creation

Reading

application typically contains a single instance, createthdyPvSystem as described

in “Overview” on page 42. There’s nothing to stop an application having several instances,
each corresponding to a different message system, but the sequencer doesn’t do this. Also,
there is no way to pend on events from a spv8ystem s.

Refer topv.h for explicit detail. The following sections describe various important
aspects of the class.

The newVariable method creates a nepvVariable corresponding to the same
message system as the callpgSystem . It should be used in preference to the concrete
xxxVariable constructors since it doesn’t require knowledgexxf!

The flush and pend methods correspond ta@a flush , ca pend io and
ca_pend_event (the latter two are combined into a singbend method with an
optional wait argument;wait=FALSE givesca pend_io behavior,i.e. exit when
pending activity is complete, anglait=TRUE gives ca_pend_event behavior,i.e.
wait until timer expires).

Thelock andunlock methods take and give a (recursive) mutex that can be used to
prevent more than one thread at a time from being within message system code. This is not
necessary for thread-safe message systems such as CA.

A debug flag is supported (it's an optional argument to the constructor and to the
newVariable method) and is used to report method entry, arguments and other
information. Debug flags are used consistently throughout the entire PV layer.

A message system-specific status, a sevep¥gévr), a statusgvStat), and an error
message, are maintained in member variables. The concrete implementations should use
the provided accessor functions to maintain up-to-date values for them. The
pvVariable class supports the same interface.

pvVariable is an abstract class that must be extended by specific message systems. It
corresponds to a control system variable accessed via its message system. Each
pvVariable object is associated with @gzSystem object that manages system-wide
issues like locking and event handling.

Refer topv.h for explicit detail. The following sections describe various important
aspects of the class.

The constructor specifies the correspondpwpystem , the variable name (which is
copied), an optional connection function, an optional private pointer, and an optional
debug flag (0 means to inherit it from {nSystem).

The constructor should initiate connection to the underlying control system variable and
should arrange to call the connection function (if supplied) on each connect or disconnect.

Like CDEYV, the PV API supports the followirget methods:

46

The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

pvStat get(pvType type, int count, pvValue *value);

pvStat getNoBlock(pvType type, int count, pvValue *value);

pvStat getCallback(pvType type, int count, pvEventFunc func,
void *arg = NULL);

» get blocks on completion for a message system specific timeout (currently 5s for
CA)

e getNoBlock doesn't block: the value can be assumed to be valid only if a
subsequenpend (with wait=FALSE) returns without error (currently, the CA
implementation ofgetNoBlock does in fact block; it should really use
ca_get_callback ; note, however, that this is not an issue for the sequencer
because it is not used).

» getCallback calls the user-specified function on completion; there is no timeout

Writing Like CDEYV, the PV API supports the following put methods:

pvStat put(pvType type, int count, pvValue *value);

pvStat putNoBlock(pvType type, int count, pvValue *value);

pvStat putCallback(pvType type, int count, pvValue *value,
pvEventFunc func, void *arg = NULL);

» put blocks on completion for a message system specific timeout (currently 5s for
CA; note that CA does not calh_put_callback for a blocking put)

» putNoBlock doesn’t block: successful completion can be inferred only if a
subsequenpend (with wait=FALSE) returns without error (note that CA does
not callca_put_callback for a non-blocking put)

» putCallback calls the user-specified function on completion; there is no timeout
(note that CA callsa_put_callback for a put with callback)

Monitoring The PV API supports the following monitor methods:

pvStat monitorOn(pvType type, int count, pvEventFunc func,
void *arg = NULL, pvCallback **pCallback = NULL);
pvStat monitorOff(pvCallback *callback = NULL);

* monitorOn enables monitors; when the underlying message system posts a
monitor, the user-supplied function will be called (CA enablakie andalarm
monitors)

» monitorOff disables monitors; it should be supplied with the callback value that
was optionally returned byonitorOn

* some message systems will permit severahitorOn calls for a single variable
(CA does); this is optional (the sequencer only ever calls it once per variable)

« all message systems must permit sevprdlariable s to be associated with the
same underlying control system variable and, when a monitor is posted, must
guarantee to propagate it to all the associpt&thriable s

Miscellaneous pvVariable supports the same debugging and error reporting interfagessstem .

EPICS Release: R3.14 The PV (Process Variable) API 47

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

6.5 Supporting a New Message System

6.5.1 Check-list

Create New Files

Edit src/pv/pvNew.cc

Edit configure/
RELEASE

Edit src/pv/Makefile

Edit application
Makefiles

6.5.2 Example

src/pv/pvFile.h

CDEV is an obvious message system to support. This section should provide the
necessary information to support it or another message system. It includes an example of a
partly functionaffile = message system.

Note that file names in this section are assumed to be relative to the top of the sequencer
source tree.

This section gives a check-list. See Section 6.5.2 on page 48 for an example of each stage.

For message system XXX, the following files should be created:

* src/pv/pvXxx.h , definitions
* src/pv/pvXxx.cc , implementation

Edit src/pv/ipvNew.cc according to existing conventions. Assume that BAEXXX
pre-processor macro is defined if and only if support for XXX is to be compiled in. See
“src/pv/pvNew.cc” on page 50 for an example.

By convention, theconfigure/RELEASE file defines the variouPVXXX make
macros. See “configure/RELEASE” on page 51 for an example.

By convention, XXX support should be compiled only if tlR/XXXmake macro is
defined and set tBRUE See “pv/src/Makefile” on page 51 for an example.

Edit applicationMakefile s to search thevXxx library and any other libraries that it
references. It is, unfortunately, necessary, to link applications against all message systems.
This is becausserc/pv/pvNew.cc references them all. This problem will disappear if

and whermpvNew is changed to loagvXxx libraries dynamically by name. See “test/pv/
Makefile” on page 51 for an example.

As an example, we consider a notiorfile message system with the following
attributes:

* Commands are read from fifdel ; they are of the formKeyword value 7,
e.g."fred 2 " sets variabldred to2 (

» Results are written to filileO ; they are of the same form as the commands
» Everything is a string

The filespvFile.h andpvFile.cc can be found in therc/pv directory. They
compile and run but do not implement full functionality (left as an exercise for the
reader!).

Only some sections of the file are shown.

class fileSystem : public pvSystem {

48

The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

src/pv/pvFile.cc

public:
fileSystem(int debug =0);
~fileSystem();

virtual pvStat pend(double seconds = 0.0, int wait = FALSE);

virtual pvVariable *newVariable(const char *name,
pvConnFunc func = NULL, void *priv = NULL, int debug =0);

private:
FILE *ifd_;
FILE *ofd_;
fd_set readfds_;

b
class fileVariable : public pvVariable {

public:
fileVariable(fileSystem *system, const char *name, pvConnFunc
func = NULL, void *priv = NULL, int debug = 0);
~fileVariable();

virtual pvStat get(pvType type, int count, pvValue *value);
virtual pvStat getNoBlock(pvType type, int count,
pvValue *value);
virtual pvStat getCallback(pvType type, int count, pvEventFunc
func, void *arg = NULL);
virtual pvStat put(pvType type, int count, pvValue *value);
virtual pvStat putNoBlock(pvType type, int count, pvValue
*value);
virtual pvStat putCallback(pvType type, int count, pvValue
*value, pvEventFunc func, void *arg = NULL);
virtual pvStat monitorOn(pvType type, int count, pvEventFunc
func, void *arg = NULL, pvCallback **pCallback = NULL);
virtual pvStat monitorOff(pvCallback *callback = NULL);

virtual int getConnected() const { return TRUE; }
virtual pvType getType() const { return pvTypeSTRING; }
virtual int getCount() const { return 1; }

private:
char *value_; [* current value */

h

Most of the file is omitted.

fileSystem::fileSystem(int debug) :
pvSystem(debug),
ifd_(fopen("iFile", "r")),
ofd_(fopen("oFile", "a"))
{
if (getDebug() >0)
printf("%8p: fileSystem::fileSystem(%d)\n", this, debug);

if (ifd_==NULL || ofd_ == NULL) {
setError(-1, pvSevrERROR, pvStatERROR, “failed to open ”
“iFile or oFile™);

EPICS Release: R3.14

The PV (Process Variable) API 49

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

return;

}

/I initialize fd_set for select()
FD_ZERO(&readfds_);
FD_SET(fileno(ifd_), &readfds_);

}
pvStat fileVariable::get(pvType type, int count, pvValue *value)
{

if (getDebug() >0)

printf("%8p: fileVariable::get(%d, %d)\n", this, type,
count);

printf("would read %s\n", getName());

strcpy(value->stringVal[0], "string");

return pvStatOK;
}
pvStat fileVariable::put(pvType type, int count, pvValue *value)
{

if (getDebug() >0)

printf("%8p: fileVariable::put(%d, %d)\n", this, type,
count);

printf("would write %s\n", getName());

return pvStatOK;
}

src/pv/ipvNew.cc Edit this to support thBle message system. Some parts of the file are omitted.

#include "pv.h"

#if defined(PVCA)
#include "pvCa.h"
#endif

#if defined(PVFILE)
#include "pvFile.h"
#endif

pvSystem *newPvSystem(const char *name, int debug) {

#if defined(PVCA)
if (strcmp(name, "ca")==0)
return new caSystem(debug);
#endif

#if defined(PVFILE)
if (stremp(name, "file")==0)
return new fileSystem(debug);
#endif

return NULL;
}

50 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

Configure/RELEASE Edit this to support théle message system. Comment out these lines to disable use of
message systems. Some parts of the file are omitted.

PVCA = TRUE
PVFILE = TRUE

pv/src/MakefiIe Edit this to support thBle message system. Some parts of the file are omitted.

LIBRARY += pv
pv_SRCS += pvNew.cc pv.cc

ifeq "$(PVCA)" "TRUE"
USR_CPPFLAGS +=-DPVCA
INC += pvCa.h

LIBRARY +=pvCa
pv_SRCS_vxWorks +=pvCa.cc
pvCa_SRCS_DEFAULT += pvCa.cc
endif

ifeq "$(PVFILE)" "TRUE"
USR_CPPFLAGS += -DPVFILE
INC += pvFile.h
LIBRARY += pvFile
pvFile_SRCS += pvFile.cc
endif

test/pv/Makefile This includes rules for building the test programs of Section 6.3 on page 42. Only those
rules are shown.

TOP = ../..
include $(TOP)/configure/ CONFIG

PROD = pvsimpleCC pvsimpleC

PROD_LIBS +=seq pv
seq_DIR = $(SUPPORT_LIB)

ifeq "$(PVFILE)" "TRUE"
PROD_LIBS += pvFile
endif

ifeq "$(PVCA)" "TRUE"
PROD_LIBS += pvCa ca
endif

PROD_LIBS += Com

include $(TOP)/configure/RULES

EPICS Release: R3.14 The PV (Process Variable) API 51

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

52 The PV (Process Variable) API Document Revision: 1

Chapter 7. Examples of State Programs

7.1 Entry and exit action example

The following state program illustrates entry and exit actions.

program snctest
float v;
assign v to “grw:xxxExample”; monitor v;

ss ssl {
state low {
entry {
printf(“Will do this on entry”);
}
entry {
printf(*Another thing to do on entry”);
}
when (v>5.0) {
printf(“now changing to high\n”);
} state high
when (delay(.1)) { } state low
exit {
printf(“Something to do on exit”);
}
}
state high {
when (v<=5.0) {
printf(“changing to low\n™);
} state low
when(delay(.1)) { } state high
}
}

EPICS Release: R3.14 Examples of State Programs

53

Chapter 7: Examples of State Programs

Dynamic assignment example

7.2 Dynamic assignment example

The following segment of a state program illustrates dynamic assignment of database
variables to database channels. We have left out error checking for simplicity.

program dynamic

option -c; /* don’t wait for db connections */
string sysName;
assign sysName to “;
long setpoint[5];
assign setpoint to {}; /* don’t need all five strings */
int i;
char str[30];
ss dyn {

state init {

when () {

sprintf (str, “MySys:%s”, “name”);

pvAssign (sysName, str);

for (i=0;i<5;i++) {
sprintf (str, “MySys:SP%d\n", i);
pVvAssign (setpoint[i], str);
pvMonitor (setpoint]i]);

}

} state process

}

state process {

}

7.3 Complex example

This example needs updating.

The following state program contains most of the concepts presented in the previous
sections. It consists of four state sets: i@yel_det , (2) generate_voltage , (3)
test_status , and (4)periodic_read . The state sdevel_det is similar to the
example in Section 2.3 on page 8. It generates a triangle waveform in one state set and
detects the level in another. Other state sets detect and print alarm status and demonstrate
asynchronougpvGet and pvPut operation. The program demonstrates several other
concepts, including access to run-time parameters with macro substitution and
macValueGet , use of arrays, escaped C code, and VxWorks input-output.

Preamble /* File example.st: State program example. */
program example (“unit=ajk, stack=11000")
I* declarations */
float aol;
assign aol to “{unit}:ao0l”;
monitor aol;
54 Examples of State Programs Document Revision: 1

Chapter 7: Examples of State Programs
Complex example

level det state set

float ao2;
assign ao?2 to “{unit}:aol”;
float wf1[2000];

assign wfl to “{unit}:wfl.FVAL”;

short bil;
assign bil to “{unit}:bil”;

float delta;

short prev_status;

short ch_status;

evflag efl;

evflag ef2;

option +r;

int fd; /* file descriptor for logging */

char *pmac; /* used to access program macros */
* State Sets */
/* State set level_det detects level > 5v & < 3v */

ss level_det {

state start {
when() {
fd =-1;
/* Use parameter to define logging file */
pmac = macValueGet(“output”);
if (pmac == 0 || pmac[0] == 0)
{

printf(“No macro defined for \"output\"\n");

fd=1;
}
else
{
fd = open(pmac, (O_CREAT | O_WRONLY), 0664);
if (fd == ERROR)
{
printf(“Can’t open %s\n”, pmac);
exit (-1);
}
}
fdprintf(fd, “Starting state program\n”);
} state init
}
state init {
/* Initialize */

when (pvConnectCount() == pvChannelCount()) {
fdprintf(fd, “All channels connectedly”);
bil = FALSE;
ao2 =-1.0;
pvPut(bil);
pvPut(ao2);

EPICS Release: R3.14

Examples of State Programs 55

Chapter 7: Examples of State Programs
Complex example

efClear(ef2);
efSet(efl);
} state low

when (delay(5.0)) {
fdprintf(fd, “...waiting\n”);
} state init

}

state low {
when (aol > 5.0) {
fdprintf(fd, “High\n”);
bil = TRUE;
pvPut(bil);
} state high

when (pvConnectCount() < pvChannelCount()) {
fdprintf(fd, “Connection lost\n”);
efClear(efl);
efSet(ef2);

} state init

}

state high {
when (aol < 3.0) {
fdprintf(fd, “Low\n”);
bil = FALSE;
pvPut(bil);
} state low

when (pvConnectCount() < pvChannelCount()) {
efSet(ef2);
} state init

generate Vo|tage /* Generate a ramp up/down */

state set ss generate_voltage {
state init {

when (efTestAndClear(efl)) {
printf(“start ramp\n”);
fdprintf(fd, “start ramp\n”);
delta =0.2;

} state ramp

}

state ramp {

when (delay(0.1)) {

if ((delta> 0.0 && ao2 >= 11.0)||
(delta < 0.0 && a02 <=-11.0))
delta = -delta;

ao2 += delta;
pvPut(ao2);

} state ramp

when (efTestAndClear(ef2)) {
} state init

56 Examples of State Programs

Document Revision: 1

Chapter 7: Examples of State Programs
Complex example

test status state set /* Check for channel status; print exceptions */
- ss test_status {
state init {

when (efTestAndClear(efl)) {
printf(“start test_status\n”);
fdprintf(fd, “start test_status\n”);
prev_status = pvStatus(aol);

} state status_check

}

state status_check {
when ((ch_status = pvStatus(aol)) != prev_status) {
print_status(fd, aol, ch_status, pvSeverity(aol));
prev_status = ch_status;
} state status_check

periodic_read state [* Periodically write/read a waveform channel. This uses
pvGetComplete() to allow asynchronous pvGet(). */

set ss periodic_read {
state init {
when (efTestAndClear(efl)) {
wfl[0] = 2.5;
wfl[l] = -2.5;
pvPut(wfl);
} state read_chan
}
state read_chan {
when (delay(5.)) {
wf1[0] += 2.5;
wfl[1] += -2.5;
pvPut(wfl);
pvGet(wfl);
} state wait_read
}
state wait_read {
when (pvGetComplete(wfl)) {
fdprintf(fd, “periodic read: ”);
print_status(fd, wf1[0], pvStatus(wfl),
pvSeverity(wfl));
} state read_chan
}
}
exit procedure [* Exit procedure - close the log file */
exit {

printf(“close fd=%d\n", fd);
if ((fd > 0) && (fd != ioGlobalStdGet(1)))
close(fd);

EPICS Release: R3.14 Examples of State Programs 57

Chapter 7: Examples of State Programs

Complex example

fd = -1;
}
C functions I* End of state sets */
%{
/* This C function prints out the status, severity,
and value for a channel. Note: fd is passed as a
parameter to allow reentrant code to be generated */
print_status(int fd, float value, int status, int severity)
{
char *pstr;
switch (status)
{
case NO_ALARM: pstr = “no alarm”;break;
case HIHI_ALARM: pstr = “high-high alarm”;break;
case HIGH_ALARM: pstr = “high alarm”;break;
case LOLO_ALARM: pstr = “low-low alarm”;break;
case LOW_ALARM: pstr = “low alarm”;break;
case STATE_ALARM: pstr = “state alarm”;break;
case COS_ALARM: pstr = “cos alarm”;break;
case READ_ALARM: pstr = “read alarm”;break;
case WRITE_ALARM: pstr = “write alarm”;break;
default: pstr = “other alarm”;break;
}
fprintf (fd, “Alarm condition: \"%s\"“, pstr);
if (severity == MINOR_ALARM)
pstr = “minor”;
else if (severity == MAJOR_ALARM)
pstr = “major”;
else
pstr = “none”;
fdprintf (fd, “, severity: \"%s\", value=%g\n”, pstr, value);
}
1%
58 Examples of State Programs Document Revision: 1

Chapter 8: Installation

The sequencer is distributed as an EPICS R&akeBaseApp application. This chapter
describes how to obtain, unpack, build, install, verify and use the distribution.

8.1 Prerequisites

EPICS R3.14 (any version) or later must be installed on your system.

8.2 Obtaining the distribution

The distribution should be obtained via the sequencer home page which is, at the time of
writing, at URL http://www2.keck.hawaii.edu:3636/realpublic/

epics/seq (what a mouthful). This describes the available versions and will point you
to a gzipped tar file with a name of the foraeq-n.m.p.tar.gz (n.m.p is the
version number.g.2.0.0).

Select and download the appropriate version. In what follows, we will assume that you
downloaded v2.0.0. However, the instructions will apply to this or any later version.

Note that, from v2.0.0, the third digit is the patch level and will be incremented each time
a new version is released, no matter how minor the changes. The second digit is the minor
version number and will be incremented each time functional changes are made. The first
digit is the major version number and will be incremented only when major changes are
made.

EPICS Release: R3.14 Installation 59

http://www2.keck.hawaii.edu:3636/realpublic/epics/seq
http://www2.keck.hawaii.edu:3636/realpublic/epics/seq

Chapter 8: Installation
Unpacking the distribution

8.3 Unpacking the distribution

cd to the directory that you wish to be the parent of the sequencer tree. Then unpack and
untar the file. For example (these steps can be combined by clever use of pipes using
syntax that | can never remember, or else if you have GNU tarzitsoption will
decompress on the fly).

% gunzip seq-2.0.0.tar.gz
% tar xvf seq-2.0.0.tar

This creates a directory tree with the following general structure (this is part of the file in
the top-level directory).

/sequencer

README This file (general notes at the top, followed
by release notes, most recent first)

(etc... update when README has been updated!)

8.4 Preparing to build

It will be necessary to edit the fileonfigure/RELEASE andconfigure/CONFIG
before building. Here are copies of these files, with the lines that you are likely to have
change highlit:

#RELEASE Location of external products
EPICS_BASE=/home/wlupton/epics/anl/base
TEMPLATE_TOP=$(EPICS_BASE)/templates/makeBaseApp/top
SEQ=/home/wlupton/epics/seq

#CONFIG
include $(TOP)/configure/CONFIG_APP
Add any changes to make rules here

#CROSS_COMPILER_TARGET_ARCHS = vxWorks-68040
CROSS_COMPILER_TARGET_ARCHS =

shareable library version (from CONFIG_BASE)
SHRLIB_VERSION = $(EPICS_VERSION).$(EPICS_REVISION)

sequencer version number (replaces old Version file)
SEQ_VERSION = 2.0.0

override to use snc from SEQ
SNC = $(SEQ)/bin/$(EPICS_HOST_ARCH)/snc

which message systems to support (comment to disable)
PVCA = TRUE

#PVFILE = TRUE

#PVKTL = TRUE

In RELEASE you should select EPICS base via #eICS_BASEmacro and the top of
the sequencer tree via tB&EQmacro.

60

Installation Document Revision: 1

Chapter 8: Installation
Building and installing

In CONFIG you should select the target architectures for which to build via the
CROSS_COMPILER_TARGET_ARCH&cro (a subset of those for which EPICS has
been built), and the message systems to support vikMKXXmacros.

8.5 Building and installing

Ensure that your environment is configured for building EPICS applications. The only
EPICS requirement is that thEPICS_HOST_ARCHenvironment variable be set
correctly (you can use th®EPICS_BASE/startup/EpicsHostArch script to set

it). However, if you built EPICS with shareable library support, your
LD_LIBRARY_PATHenvironment variable will have to incluEPICS_ BASE/lib/
$EPICS_HOST_ARCHand if you are using gcc with shareable library support, it will
have to include the directory that contalitsstdc++.s0 . These notes are written from

a Solaris standpoint; details may vary slightly under other architectures.

cd to the top of the sequencer tree and run GNU make. The tree should build without
incident. Please feed back any build problems (and their resolutions!) to me. My e-mail
address is on the front cover of this manual.

Note that make builds in theonfigure directory, then thesrc tree, and finally the
test tree. A failure in theest tree will not impact your ability to write sequences.

8.6 \Verifying the installation

Under Solaris, the-R loader option will have been used to link executables, so
LD_LIBRARY_PATHshould need no further additions. Under other operating systems, it
may be necessary to appenfiSUPPORT/Iib/$EPICS HOST_ARCH, where
SUPPOR™ as the value that you gave itdonfigure/RELEASE

cd to $SUPPORT/bin/$EPICS_HOST_ARCH. It should look like this:

demo sncDelay sncEntryVar sncExample sncOpttVar
demo.vws sncEntry sncEXEntry sncEXxitOptx
snc sncEntryOpte sncExOpt sncOptt

Try running demo. This includes its own CA server, so no I0C or portable CA server is
needed. It should look something like this:

% ./demo

Starting ioclnit

HH T T P T
@(#)EPICS IOC CORE built on Mar 22 2000

#i## @(#)Version R3.14.0.alpha $$Date: 2000/03/16 15:38:06 $$

@ (#)Built date Mar 22 2000

BB R R R T R B R R R B
db_attach_pvAdapter | dont know what to call

ioclnit: All initialization complete

@(#)SEQ Version 2.0.0: Fri Mar 31 16:50:09 HST 2000
osiSockDiscoverInterfaces(): ignoring loopback interface: 100
osiSockDiscoverlnterfaces(): net intf hme0 found

osiSockDiscoverinterfaces(): ignoring loopback interface: 100
osiSockDiscoverlnterfaces(): net intf hme0 found

Spawning thread 0xa54c0: "demo_1"

EPICS Release: R3.14

Installation 61

Chapter 8: Installation
Verifying the installation

Spawning thread 0xa5580: "demo_2"

Spawning state program "demo”, thread 0x98240: "demo"
demo_1 2000/03/31 17:14:24: start -> ramp_up

demo 2000/03/31 17:14:31.: light_off -> light_on

demo_1 2000/03/31 17:14:35: ramp_up -> ramp_down

If you see the Start -> ramp_up 7 etc.messages, things are good. If not, some
channels haven’t connected (use theétb command to find out which).

Issue the i*” command. You should something like this:
i
NAME ID PRI STATE WAIT
main 2adf8 0 OK
errlog 323a0 10 OK
taskwd 32508 10 OK
cbLow 3cf48 59 OK
cbMedium 30el0 64 OK
cbHigh 30ed8 71 OK
dbCaLink 313f0 50 OK
CAC process 31570 50 OK
scanOnce 4c5f0 70 OK
scanl0 4c878 60 OK
scan5 4c908 61 OK
scan2 4c9b0 62 OK
scanl 4ca40 63 OK
scan0.5 4cad0 64 OK
scan0.2 4ch60 65 OK
scan0.1 4cbf0 66 OK
CAtcp 4cda0 20 OK
CAudp 4ce30 19 OK
seqAux 4def0 51 OK
CAonline 4dfg80 7 OK
CAC process 8ee70 50 OK
demo 9b310 50 OK
CAC UDP Recv 9c588 10 OK
CAC UDP Send 9c618 10 OK
osiTimerQueue 9c6e0 0 OK
demo_1 9cac0 50 OK
demo_2 9cb50 50 OK
CAC TCP Recv 9d070 10 OK
CAC TCP Send 9d100 10 OK
CA event b2cd8 19 OK
CAclient b2d68 10 OK

Finally, go to an xterm and do the following:

% caget ssO

ss0 light
% caget ss1
ssl ramp

This illustrates the very basic “sequencer device support” in this release. These records are
returning the names of the first two state-sets of the above sequence.

Most (maybe all) of the other test programs do not connect to control system variables and
can be run without an I0C. For example:

% sncExitOptx
@(#)SEQ Version 2.0.0: Fri Mar 31 16:50:09 HST 2000
Spawning state program "sncexitoptx”, thread 0x30868: "sncexitoptx"

62 Installation Document Revision: 1

Chapter 8: Installation
Using the installation

low, delay timeout, incr v and now reenter low
v=1

Pause on each exit of low, including iterations’
low, delay timeout, incr v and now reenter low
v=2

Pause on each exit of low, including 'iterations’
low, delay timeout, incr v and now reenter low
v=3

Pause on each exit of low, including iterations’
"D

8.7 Using the installation

This section assumes that you are working imakeBaseApp environment. The more
general information in Section 3.8 on page 22 should help if this is not the case.

You need to edit your owrconfigure/RELEASE and configure/CONFIG files to
reference the correct sequencer version. The necessary changes are similar to those that
were made to build the sequencer (Section 8.4 on page 60). Here are versions of the files
with the lines that must be added for the sequencer highlit:

#RELEASE Location of external products
EPICS_BASE=_EPICS_BASE_
TEMPLATE_TOP=_TEMPLATE_TOP_
SEQ=_SEQ_TOP_

#CONFIG
include $(TOP)/configure/CONFIG_APP
Add any changes to make rules here

#CROSS_COMPILER_TARGET_ARCHS = vxWorks-68040

SNC = $(SEQ)/bin/$(EPICS_HOST_ARCH)/snc

You can refer to the variouslakefile s in the test tree to see how to write your own
sequences. For example, here is kakefile for the abovesncExitOptx program
(test/validate/Makefile):

TOP = ../..
include $(TOP)/configure/ CONFIG

SNCFLAGS = +m

SEQS = sncDelay sncEntry sncEntryOpte sncEntryVar sncExitOptx \
sncOptt sncOpttVar

PROD = $(SEQS)

OBJS_vxWorks = $(SEQS)

PROD_LIBS +=seq
seq_DIR =$(SEQ_LIB)

include $(TOP)/test/Makefile.pv
PROD_LIBS += Com

include $(TOP)/configure/RULES

EPICS Release: R3.14

Installation 63

Chapter 8: Installation
Using the installation

This Makefile includestest/Makefile.pv but you will probably want to look at

that and bring what you need inline (it handles all the possible message systems and you
will likely be using only a single message system). For example, to use CA, the following
would be fine.

TOP = ../[..
include $(TOP)/configure/CONFIG

SNCFLAGS = +m

SEQS = sncDelay sncEntry sncEntryOpte sncEntryVar sncExitOptx \
sncOptt sncOpttVar

PROD = $(SEQS)

OBJS_vxWorks = $(SEQS)

PROD_LIBS += seq pv pvCa ca Com
seq_DIR =$(SEQ_LIB)

include $(TOP)/configure/RULES

The only real requirements here are tB&Qis defined to point to the head of the tree in
which the sequencer has been installed (seefigure/RELEASE ; SEQ_LIB is
automatically defined by a make ruledonfigure), and thatSNCis defined like this
(seeconfigure/CONFIG):

SNC = $(SUPPORT)/bin/$(EPICS_HOST_ARCH)/snc

64 Installation Document Revision: 1

Chapter 9: Acronyms/Glossary

This is not yet a terribly useful section.

9.1 Acronym List

API
CA
CDEV
EPICS
GDD
I0C
KTL
(O]
PV
SNC
SNL
STD
UML

9.2 Glossary

Application Programming Interface
Channel Access

Control DEVice

Experimental Physics and Industrial Control System
Generalized Device Descriptor
Input/Output Controller

Keck Task Library

Operating System Independent
Process Variable

State Notation Compiler

State Notation Language

State Transition Diagram
Unified Modeling Language

Channel Access

Control DEVice

Input/Output Controller

EPICS software that supports network independent
access to I0C databases.
API (originating at Jefferson Lab) that provide message
system independent means of interacting with an under-
lying control system.

The VME/VXI based chassis containing a real-time pro-
cessor, various 1/0 modules, and VME modules that
provide assess to other I/O buses such as GPIB.

EPICS Release: R3.14

Acronyms/Glossary 65

Chapter 9: Acronyms/Glossary
Glossary

66 Acronyms/Glossary Document Revision: 1

Index

pvNew.cC..........covvvvn... 42
A E seqCom.h. 19
AMAYS. . oo oo e 11 efClear 38 seqgLibrary, 19
assign. ... 4,8,10,12 efSet 38 shareLibh 19
effest 38 SNC .ot 19
efTestAndClear. 4,38 taskwd.h. L 19
C entry handler. 30 tsStamp.h........ooll 19
one-off 3,28,30 functions
C per-state 3,33 delay.................. 10, 33, 35
blocksof Ccode.............. 39 errlogPrintf.................. 5, 28 efClear...................... 38
calling pvGetetc. fromC 39 eventflags..................... 13 efSet.............. 38
comments 38 synchronizing with variables 32 effTest. 38
escapetoC 39 exithandler.................... 30 efTestAndClear 4,38
inineCcode................. 39 one-off 3,30 errlogPrintf., 5,28
local variables 39 per-state 3,33 ocLoglnit 28
variableextent. 39 macValueGet 27, 38
C pre-processor. 20 newPvSystem. 46
CA........... 1-3, 19, 22, 35, 38, 41 = PVASSIQN 37
ca put......... .o, 35 pvAssignCount 12, 38
ca_put_callback. 35 files pvAssigned 12, 37
channel access, see CA epicsTypes.h................. 19 pvChannelCount 12, 38
errlog.h. L 19 pvConnectCount 12, 38
iocCoreLibrary. 19 pvConnected 16, 37
D libca 19 pvCount.................. 16, 37
libCom 19 pvFlush 37
debugging libpv 19 pvFreeQ................ 3, 14, 36
seqChanShow 3,6,26 libpvCa..............oi.... 19 pvGet............ 4,14-15, 28, 36
seqQueueShow 3,26 libseqcciiiiiii 19 pvGetComplete 14, 35-36
seqShow 3,6,26 osiSem.h.................... 19 pvGetQ. 3,14,32,36
underUnix 26 osiThread.h.................. 19 pvindex 37
delay 10,33,35 pveCC.......iiiii 42 pvMonitor 36
device support. 3 pvh.o......LL 42-43, 46 pvPut.......... 4,8,10-12, 28, 35
pvAlarm.h. 19, 37, 43 pvPutComplete 4,15, 35
pvCa.cC........oviin.. 42 pvSeverity 12, 37
pvCa.h 42 pvStatus. 12, 37
pvLibrary 19 pvStopMonitor. 37
EPICS Release: R3.14.0 Index 67

Index

pvTimeStamp 12, 37
SO vt e 30
seqlog 28
seqStop 30
|
jocLoglnit. 28
K
Kozubal, Andy 1
KTL . 42
L
Lupton, William 1
M
macValueGet. 27, 38
monitor. 8
monitors
de-queueing 36
queuing. 14, 32
N
NamMe, 30
newPvSystem.................. 46
(0]

Operating System Independent, see OSI

OSl .. 1,3
P
parameters
debug L. 27
logfile 27-28
name.............ccovu... 27, 30
priority ... 28
stack 28
process variable, see PV API
program.iiiia... 9, 27
PV API . 2-3, 16, 27, 35-37, 41, 45-47
PV.CC .o it 42
pv.h. . oo 42-43, 46
pvAlarm.h. o 37,43
PVASSIgN. 37
pvAssignCount. 12, 38
pvAssigned. 12, 37
pvCa.cC............iiii 42
pvCa.h........................ 42
pvChannelCount. 12, 38
pvConnectCount. 12, 38

pvConnected 16, 37
pvCount 16, 37
pvFlush. 37
pvFreeQ 3, 14, 36
pvGet............. 4, 14-15, 28, 36
pvGetComplete 14, 35-36
pvGetQ. 3,14,32,36
pvindex, 37
pvMonitor 36

pvNew.cC 42
pvPut 4,8,10-12, 28, 35
pvPutComplete. 4,15, 35
pvSeverity 12, 37
pvStatus 12, 37
pvStopMonitor. 37

pvTimeStamp............... 12, 37

S
SEO + vt 30
seqChanShow. 3,6, 26
seqlog . ..o 28
seqQueueShow. 3,26
seqShow. 3,6, 26
seqStop. 4, 26-27, 30
sequencer
device support 3
sequences
creation. 25
deletion. 26
eventflags 13
SNC ... 19
SNL .o 19
compiler options
- 4,14, 20, 36
C ot 16, 20
d.oo 20
= 21,28
b 21
Mo 3,19,21
Mo 16, 21, 32, 39-40
W 21
option placement 21
options in source files. 32
state options
= 3,33
SR 3,33,35
X ot e 3,33
structure 8
SYNtaX. .o oo 8

State Notation Compiler, see SNC
State Notation Language, see SNL

statesets. 9

state transition diagram, see STD
statements

assign.........ooiiinn. 4,8,10
monitor. 8
program 9, 27

SYNC .o vt 4,13
SYyNnCQ. ... 3-4, 36
when 4, 8, 10, 13-14, 16, 28, 33, 35—
36, 38-39
STD .ot 7
SYNC . vt 4,13
synchronization................. 13
SYNCQ. ... 3-4, 36
T
types. 11
\Y,
variables
arraYS . . oo 11
assigning 31
assignmentto................. 12
asynchronousget.............. 36
asynchronous put. 35
de-assignment from............ 12
declarationof................. 30
de-queueing monitors 36
emptying queues 36
extent....................... 39
local.......... 39
monitoring 31
gueuing monitors. 14, 32
statusof, 12
synchronizing with 13
synchronizing with event flags 13, 32
synchronousget. 36
synchronous put. 35
YPES. o o 11
undeclared warnings 39
VXWorks 3
w
when4, 8, 10, 13-14, 16, 28, 33, 35-36,
38-39
White,Greg. o 1

68

Document Revision: 1

	State Notation Language and Sequencer Users’ Guide
	Table of Contents
	Chapter 1: Introduction
	1.1 Note on Versions
	1.2 Overview
	1.3 Content of this Manual
	1.4 Copyright and Restrictions
	1.5 Notes on This Release
	1.5.1 Portability changes
	Replaced VxWorks dependencies with OSI routines
	Replaced direct channel access calls with new PV API
	Added optional generation of main program

	1.5.2 New Language Features
	Entry handler
	Entry and exit actions
	State options
	Queueable monitors
	Device support
	Local variables
	More functions are safe in action code
	Asynchronous puts
	Synchronous/ asynchronous override on gets and puts
	Sequencer deletion re- written
	efClear can wake up state sets
	More C syntax is supported

	1.5.3 Bugs fixed
	Avoidance of segmentation violations
	Avoidance of race condition which prevented monitors from being enabled

	1.5.4 Miscellaneous

	1.6 Future Plans
	Device support
	Local variables
	pvNew dynamic loading
	Hierarchical states

	1.7 Notes on v1.9 Release
	Number of control system variables
	Array assignments
	Dynamic assignments
	Hex constants
	Time stamp
	Pointers
	seqShow
	seqChanShow
	ANSI prototypes
	Fix for task deletion

	Chapter 2: State Notation Language Concepts
	2.1 The State Transition Diagram
	2.2 Elements of the State Notation Language
	2.3 A Complete State Program
	2.4 Adding a Second State Set
	2.5 Variable Names Using Macros
	2.6 Data Types
	2.7 Arrays of Variables
	2.8 Dynamic Assignment
	2.9 Status of Control System Variables
	2.10 Synchronizing State Sets with Event Flags
	2.11 Queuing Monitors
	2.12 Asynchronous Use of pvGet()
	2.13 Asynchronous Use of pvPut()
	2.14 Connection Management
	2.15 Multiple Instances and Reentrant Object Code
	2.16 Control System Variable Element Count

	Chapter 3: Compiling a State Program
	3.1 Files needed
	3.2 The State Notation Compiler
	3.3 Name of output file
	3.4 Compiler Options
	3.5 Compiler Errors
	3.6 Compiler Warnings
	3.7 Compiling and Linking a State Program under Unix
	3.8 Using makeBaseApp
	Makefile
	Make output

	Chapter 4: Using the Run Time Sequencer
	4.1 VxWorks-specific instructions
	Loading the sequencer
	Loading a State Program
	Executing the State Program
	Examining the State Program
	Stopping the State Program Tasks

	4.2 Unix-specific instructions
	Executing the State Program
	Examining the state program
	Stopping the State Program Tasks

	4.3 Specifying Run-Time Parameters
	VxWorks
	Unix
	Access within program

	4.4 Sequencer Logging
	4.5 What Triggers an Event?

	Chapter 5: State Notation Language Syntax
	5.1 Typographical conventions
	5.2 State Program
	program
	program_name
	parameter_list
	definition
	entry_handler
	state_set
	exit_handler

	5.3 Definitions
	definition
	decl_stmt
	assign_stmt
	monitor_stmt
	sync_stmt
	syncq_stmt
	compiler_option_stmt

	5.4 State Sets
	state_set
	state_set_name
	state_def
	state_name
	state_option_stmt
	entry_action
	event_action
	new_state
	exit_action

	5.5 Statements and Expressions
	statement
	expression
	binop
	asgnop
	unop
	number char_const string name

	5.6 Built-in Functions
	delay
	pvPut
	pvPutComplete
	pvGet
	pvGetComplete
	pvGetQ
	pvFreeQ
	pvMonitor
	pvStopMonitor
	pvFlush
	pvCount
	pvStatus
	pvSeverity
	pvTimeStamp
	pvAssign
	pvAssigned
	pvConnected
	pvIndex
	pvChannelCount
	pvAssignCount
	pvConnectCount
	efSet
	efTest
	efClear
	efTestAndClear
	macValueGet

	5.7 C Compatibility Features
	Comments
	Escape to C Code
	User Functions within the State Program
	Calling pvGet etc. from C
	Variable Extent
	Variable Modification for Reentrant Option

	Chapter 6: The PV (Process Variable) API
	6.1 Introduction
	6.2 Rationale
	6.3 A tour of the API
	Overview
	Simple C++ PV program (comments and error handling have been removed)
	The equivalent program using the C API

	6.4 The API in More Detail
	6.4.1 Type definitions
	Status
	Severity
	Data Types
	Data Values
	Callbacks

	6.4.2 pvSystem Class
	Variable Creation
	Event Handling
	Locking
	Debugging
	Error Reporting

	6.4.3 pvVariable Class
	Creation
	Reading
	Writing
	Monitoring
	Miscellaneous

	6.5 Supporting a New Message System
	6.5.1 Check-list
	Create New Files
	Edit src/pv/pvNew.cc
	Edit configure/ RELEASE
	Edit src/pv/Makefile
	Edit application Makefiles

	6.5.2 Example
	src/pv/pvFile.h
	src/pv/pvFile.cc
	src/pv/pvNew.cc
	configure/RELEASE
	pv/src/Makefile
	test/pv/Makefile

	Chapter 7: Examples of State Programs
	7.1 Entry and exit action example
	7.2 Dynamic assignment example
	7.3 Complex example
	Preamble
	level_det state set
	generate_voltage state set
	test_status state set
	periodic_read state set
	exit procedure
	C functions

	Chapter 8: Installation
	8.1 Prerequisites
	8.2 Obtaining the distribution
	8.3 Unpacking the distribution
	8.4 Preparing to build
	8.5 Building and installing
	8.6 Verifying the installation
	8.7 Using the installation

	Chapter 9: Acronyms/Glossary
	9.1 Acronym List
	9.2 Glossary

	Index

