
State Notation Language
and Sequencer Users’ Guide

William Lupton (wlupton@keck.hawaii.edu)

W. M. Keck Observatory
Kamuela, HI 96743, USA
March 2000
EPICS Release 3.14.0
EPICS Release: R3.14.0 State Notation Language and Sequencer Users’ Guide

State Notation Language and Sequencer Users’ Guide Document Revision: 1

Table of Contents
 . iii

 . 1
1
 . .
. . . .2
. . . .2
.2
. . .
.5

. 7
7
8
8
.9
 . . .10
 . .
. . .11
. . .12
 . . .12
 . . .13
. . .14
 . . .14
 . . .15
 . . .16
 . . .16
. . .16

19
 Table of Contents .

Chapter 1: Introduction .
1.1. Note on Versions .
1.2. Overview .. .1
1.3. Content of this Manual .
1.4. Copyright and Restrictions .
1.5. Notes on This Release .
1.6. Future Plans .5
1.7. Notes on v1.9 Release .

Chapter 2: State Notation Language Concepts .
2.1. The State Transition Diagram .
2.2. Elements of the State Notation Language .
2.3. A Complete State Program. .
2.4. Adding a Second State Set .
2.5. Variable Names Using Macros. .
2.6. Data Types ..11
2.7. Arrays of Variables.
2.8. Dynamic Assignment .
2.9. Status of Control System Variables .
2.10.Synchronizing State Sets with Event Flags .
2.11.Queuing Monitors .
2.12.Asynchronous Use of pvGet() .
2.13.Asynchronous Use of pvPut() .
2.14.Connection Management .
2.15.Multiple Instances and Reentrant Object Code .
2.16.Control System Variable Element Count .

Chapter 3: Compiling a State Program .
EPICS Release: R3.14.0 Table of Contents iii

Table of Contents

 . . .
. . . 19
 . . 20
. . . 20
. . . 21
 . . 21
. . 21
. . . 22

25
. . 25
 . . 26
. . . 27
 . . . 28
. . . 28

29
. . . 29
 . . . 2
 .
 .
. . . . 34
 . . 35
 . . 38

41
. .
. .
 . . 42
 . . 43
 . . . 48

53
. . . 53
. . . 54
. . . 54

59
 . .
 . . 59
 . . 60
. . . 60
 . . 61
. . 61
. . . 63

65
 . . 65
. .

. . 67
3.1. Files needed .19
3.2. The State Notation Compiler .
3.3. Name of output file .
3.4. Compiler Options.
3.5. Compiler Errors .
3.6. Compiler Warnings .
3.7. Compiling and Linking a State Program under Unix .
3.8. Using makeBaseApp .

Chapter 4: Using the Run Time Sequencer .
4.1. VxWorks-specific instructions .
4.2. Unix-specific instructions .
4.3. Specifying Run-Time Parameters .
4.4. Sequencer Logging .
4.5. What Triggers an Event? .

Chapter 5: State Notation Language Syntax .
5.1. Typographical conventions .
5.2. State Program. .9
5.3. Definitions .. 30
5.4. State Sets .. . 32
5.5. Statements and Expressions.
5.6. Built-in Functions .
5.7. C Compatibility Features. .

Chapter 6: The PV (Process Variable) API .
6.1. Introduction . 41
6.2. Rationale . . 41
6.3. A tour of the API .
6.4. The API in More Detail .
6.5. Supporting a New Message System .

Chapter 7: Examples of State Programs .
7.1. Entry and exit action example .
7.2. Dynamic assignment example .
7.3. Complex example .

Chapter 8: Installation .
8.1. Prerequisites. .. 59
8.2. Obtaining the distribution .
8.3. Unpacking the distribution .
8.4. Preparing to build .
8.5. Building and installing. .
8.6. Verifying the installation .
8.7. Using the installation .

Chapter 9: Acronyms/Glossary .
9.1. Acronym List .
9.2. Glossary . . 65

 Index .
iv Table of Contents Document Revision: 1

Chapter 1: Introduction
n by
ibes
M.

nder
er is
dent on

ew

ing
sition
with

ork of
ts, and
ulti-

ch as
nts.
1.1 Note on Versions

Version 1.9 of this manual described version 1.9 of the sequencer and was writte
Andy Kozubal, the original author of this software. This version of the manual descr
version 2.0, for which the changes have been implemented by William Lupton of W.
Keck Observatory and Greg White of Stanford Linear Accelerator Center (SLAC).

Version 2.0 differs from version 1.9 mainly in that sequencer run-time code can run u
any operating system for which an EPICS OSI (Operating System Independent) lay
available, and message systems other than channel access can be used. It is depen
libraries which will be generally available only with EPICS R3.14.

An interim version 1.9.4 was made available to the EPICS community; all n
developments apart from major bug fixes will be based on version 2.0.

1.2 Overview

The state notation language (SNL) provides a simple yet powerful tool for programm
sequential operations in a real-time control system. Based on the familiar state tran
diagram concepts, programs can be written without the usual complexity involved
task scheduling, event handling, and input/output programming.

Programs produced by the state notation language are executed within the framew
the run-time sequencer. The sequencer drives the program to states based on even
establishes interfaces to the program that enable it to perform real-time control in a m
tasking environment. The sequencer also provides services to the program su
establishing connections to control system variables and handling asynchronous eve
EPICS Release: R3.14 Introduction 1

Chapter 1: Introduction
Content of this Manual

hysics
tions
ws
ental
S is a
he
nal
neric
annel

l-time
rough
anding

for
gging
x and

rking

ional
the
ay

rety,

gives

lease
n-time
iler to
ource-
The state notation language and sequencer are components of the Experimental P
and Industrial Controls System (EPICS). EPICS is a system of interactive applica
development tools (toolkit) and a common run-time environment (CORE) that allo
users to build and execute real-time control and data acquisition systems for experim
facilities, such as particle accelerators, free electron lasers and telescopes. EPIC
product of the Accelerator Automation and Controls Group (AOT-8), which is within t
Accelerator Operations and Technology (AOT) Division at the Los Alamos Natio
Laboratory. The sequencer interfaces to the underlying control system through a ge
PV (process variable) API that supports, among other message systems, the ch
access facility of EPICS.

1.3 Content of this Manual

This users manual describes how to use the state notation language to program rea
applications. The user is first introduced to the state notation language concepts th
the state transition diagram. Through a series of examples, the user gains an underst
of most of the SNL language elements. Next, the manual explains procedures
compiling and executing programs that are generated by the SNL. Testing and debu
techniques are presented. Then, we present a complete description of the SNL synta
the sequencer options. Finally, we describe the PV layer, give some examples of wo
sequences, and describe how to build, test and work with the sequencer installation.

1.4 Copyright and Restrictions

This software was produced under U.S. Government contract at Los Alamos Nat
Laboratory and at Argonne National Laboratory. The EPICS software is copyright by
Regents of the University of California and the University of Chicago. This document m
be reproduced and distributed without restrictions, provided it is reproduced in its enti
including the cover page.

1.5 Notes on This Release

New version 1.9 features have been moved to Section 1.7 on page 5. This section
brief notes on version 2.0 changes.

Version 2.0 of the sequencer and state notation compiler is available for EPICS re
R3.14 and later. We have added several enhancements to the language and to the ru
sequencer. State programs must be compiled under the new state notation comp
execute properly with the new sequencer. However, under most circumstances no s
level changes to existing programs are required.

1.5.1 Portability
changes

These changes allow state programs to run unchanged on hosts and IOCs.
2 Introduction Document Revision: 1

Chapter 1: Introduction
Notes on This Release

tem
is an

API
pter 6:

st of

ecute

state

te and
3 and

te,

onitor
ported

stem
rallel

rence
s. See
Replaced VxWorks
dependencies with
OSI routines

All VxWorks routines have been replaced with the appropriate OSI (Operating Sys
Independent) routines. State programs can run in any environment for which there
OSI implementation.

Unused (and undocumented)VX_OPT option has been removed.

Replaced direct
channel access calls
with new PV API

All CA calls have been replaced with equivalent calls to a new PV (process variable)
which can be layered on top of not just CA but also other message systems. See Cha
on page 41.

Added optional
generation of main
program

The new+m(main) option generates a C main program whose single argument is a li
macro assignments.

When this option is enabled, the main thread reads from standard input and can ex
seqShow, seqChanShow etc. on demand. End of file causes the sequencer to exit.

1.5.2 New Language
Features

Entry handler A one-off entry handler can be supplied (c.f. the existingexit handler). This is called
once, at sequencer start-up, in the context of the first state set, before the remaining
set threads have been created. See “entry_handler” on page 30.

Entry and exit actions Theentry block of a state is executed each time the state is entered; theexit block is
executed each time the state is left. Note that these blocks are aassociated with a sta
are not the same as the one-off entry and exit handlers. See “entry_action” on page 3
“exit_action” on page 33.

State options -t , -e and -x are now recognized options within the scope of a state.-t inhibits the
“timer reset” on re-entry to a state from itself;-e (for “entry”) is used with the new
entry block, and forces theentry statements to be executed on all entries to a sta
even if from the same state;-x (for “exit”) is complementary to-e , but for the newexit
block. See “state_option_stmt” on page 33.

Queueable monitors Monitor messages can be queued and then dequeued at leisure. This means that m
messages are not lost, even when posted rapidly in succession. This feature is sup
by newsyncQ , pvGetQ andpvFreeQ language elements, and a newseqQueueShow
routine. When SNL arrays are used, a single queue is shared by the control sy
variables associated with the elements of the array, which can be useful for pa
control. See “Queuing Monitors” on page 14 and “syncq_stmt” on page 32.

Device support An device support module has been added. This allows EPICS records to refere
sequencer internals. At present this is very basic and can only return state-set name
Section 8.6 on page 61 for a well-hidden example (look for “caget ss0 ”).
EPICS Release: R3.14 Introduction 3

Chapter 1: Introduction
Notes on This Release

rated
ape
9.

d
in

aken

ed).

encer

xes

“

Local variables SNL does not support the declaration of local variables. However, the C code gene
for a when clause is now placed within an extra level of braces and the C esc
mechanism can be used to declare a local variable. See “Variable Extent” on page 3

More functions are
safe in action code

In previous versions, some functions,e.g. pvPut , have acquired a resource lock an
others,e.g. efTestAndClear , have not. Those that didn’t were intended for use
action code and those that did not were intended for use inwhen clauses. This was
confusing and dangerous. All such functions now acquire a mutex (that can be t
recursively).

Asynchronous puts pvPut can now put process variables asynchronously by using an extraASYNC
argument. Completion can be tested using the newpvPutComplete . Arrays are
supported (sopvPutComplete can be used to test whether a set of puts has complet
See Section 2.13 on page 15 and “pvPutComplete” on page 35.

Synchronous/
asynchronous
override on gets and
puts

pvGet andpvPut both accept an optionalSYNCor ASYNCargument that, forpvGet ,
overrides the default as set using the-a option and, forpvPut , overrides the default
synchronous behavior. See “pvPut” on page 35 and “pvGet” on page 36.

Sequencer deletion re-
written

Sequencer deletion has been completely re-written. You can no longer delete a sequ
by deleting one of its tasks. Instead you must use the newseqStop routine. See
“Stopping the State Program Tasks” on page 26.

efClear can wake up
state sets

Clearing an event flag can now wake up state sets that reference the event flag inwhen
tests.

More C syntax is
supported

The “to ” in assign , sync andsyncQ statements is now optional.

Compound expressions such asi=1,j=2 (often used infor loops) are now permitted.

Variables can now be initialized in declarations such asint i=2; .

Pre-processor “#” lines are now permitted between state sets and states (rela
restrictions on using#include to include code).

“~” (complement) and “̂” (exclusive or) operators are permitted.

ANSI string concatenation,e.g.“xxx” “yyy” is the same as“xxxyyy” , is supported.

Full exponential representation is supported for numbers (previously couldn’t useE”
format).

1.5.3 Bugs fixed

Avoidance of
segmentation
violations

SEGV no longer occurs if an undeclared variable or event flag is referenced

SEGV no longer occurs if the last bit of an event mask is used

SEGV no longer occurs when doingseqShow and there was no previous state
4 Introduction Document Revision: 1

Chapter 1: Introduction
Future Plans

ed to

42.

odel
ents

ation
stems

fined
ber
Miscellaneous other problems found by purify were fixed.

Avoidance of race
condition which
prevented monitors
from being enabled

If a connection handler was called beforeseq_pvMonitor , a race condition meant that
theca_add_array_event routine might never get called.

1.5.4 Miscellaneous Compilation warnings have been avoided wherever possible.

A 60Hz system clock frequency is no longer assumed.

Error reporting is now more consistent; it is currently just usingerrlogPrintf .

The new EPICS R3.14configure -based make rules are used.

1.6 Future Plans

Several items remain unsupported or only partially supported. Users are encourag
provide feedback on this list or on other desired items.

Device support This is partially supported. See “Device support” on page 3.

Local variables These are partially supported. See “Local variables” on page 4.

pvNew dynamic
loading

This would remove some undesirable library dependencies. See “Overview” on page

Hierarchical states This would be a major enhancement and would, incidentally, bring the sequencer m
into very close agreement with the Harel model that is espoused by the UML. Ev
would be propagated up the state hierarchy.

1.7 Notes on v1.9 Release

With this version (v1.9), we have incorporated many extensions to the state not
language. Some of these changes offer significant advantages for programs and sy
with a large number of control system variables.

Number of control
system variables

The previous restriction on the number of control system variables that could be de
no longer applies. Only the amount of memory on the target processor limits the num
of variables.
EPICS Release: R3.14 Introduction 5

Chapter 1: Introduction
Notes on v1.9 Release

ature
ble-

the

these

ystem

he

ble
and

this

d to
Array assignments Individual elements of an array may be assigned to control system variables. This fe
simplifies many codes that contain groups of similar variables. Furthermore, dou
subscripted arrays allow arrays of array-valued variables.

Dynamic assignments Control system variables may now be dynamically assigned or re-assigned within
language at run time.

Hex constants Hexadecimal numbers are now permitted within the language syntax. Previously,
had to be defined in escaped C code.

Time stamp The programmer now has access to the time stamp associated with a control s
variable.

Pointers Variables may now be declared as pointers.

seqShow We enhanced theseqShow command to present more relevant information about t
running state programs.

seqChanShow TheseqChanShow command now allows specification of a search string on the varia
name, permits forward and backward stepping or skipping through the variable list,
optionally displays only variables that are or are not connected.

The syntax for displaying only variables that are not connected is
seqChanShow “<seq_program_name>”, “-”

ANSI prototypes SNC include files now use ANSI prototypes for all functions. To the programmer
means that an ANSI compiler must be used to compile the intermediate C code.

Fix for task deletion Version 1.8 of the sequencer didn’t handle the task deletion properly if a task trie
delete itself. We corrected this in version 1.9.
6 Introduction Document Revision: 1

Chapter 2: State Notation Language Concepts
of a
ction

xternal
nd the

sed,
age
ut or
f 4.2
2.1 The State Transition Diagram

The state transition diagram or STD is a graphical notation for specifying the behavior
control system in terms of control transformations. The STD serves to represent the a
taken by the control system in response to both the present internal state and some e
event or condition. To understand the state notation language one must first understa
STD schema.

A simple STD is shown in figure 1. In this example the level of an input voltage is sen
and a light is turned on if the voltage is greater than 5 volts and turned off if the volt
becomes less than 3 volts. Note that the output or action depends not only on the inp
condition, but also on the current memory or state. For instance, specifying an input o
volts does not directly specify the output; that depends on the current state.

Light is Off

Light is On

V < 3V > 5

Turn light offTurn light on

Figure 2-1: A simple state transition diagram
EPICS Release: R3.14 State Notation Language Concepts 7

Chapter 2: State Notation Language Concepts
Elements of the State Notation Language

he C
sions,
s that

are

is
2.2 Elements of the State Notation Language

The following SNL code segment expresses the STD in Figure 2-1 on page 7:

state light_off {
when (v > 5.0) {

light = TRUE;
pvPut(light);

} state light_on
}

state light_on {
when (v < 3.0) {

light = FALSE;
pvPut(light);

} state light_off
}

You will notice that the SNL appears to have a structure and syntax that is similar to t
language. In fact the SNL uses its own syntax plus a subset of C, such as expres
assignment statements, and function calls. This example contains two code block
define states:light_off and light_on . Within these blocks arewhen statements
that define the events (“v > 5.0 ” and “v < 3.0 ”). Following these statements are
blocks containing actions (C statements). ThepvPut function writes or puts the value in
the variablelight to the appropriate control system variables. Finally, the next states
specified following the action blocks.

For the previous example to execute properly the variablesv andlight must be declared
and associated with control system variables using the following declarations:

float v;
short light;
assign v to “Input_voltage”;
assign light to “Indicator_light”;

The aboveassign statements associate the variablesv and light with the control
system variables “Input_voltage ” and “Indicator_light ” respectively. We
want the value ofv to be updated automatically whenever it changes. This
accomplished with the following declaration:

monitor v;

Whenever the value in the control system changes, the value ofv will likewise change
(within the time constraints of the underlying system).

2.3 A Complete State Program

Here is what the complete state program for our example looks like:

program level_check
float v;
assign v to “Input_voltage”;
monitor v;
short light;
assign light to “Indicator_light”;

ss volt_check {
8 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Adding a Second State Set

. This

one

rates a
state light_off
{

when (v > 5.0) {
/* turn light on */
light = TRUE;
pvPut(light);

} state light_on
}

state light_on
{

when (v < 5.0) {
/* turn light off */
light = FALSE;
pvPut(light);

} state light_off
}

}

To distinguish a state program from other state programs it must be assigned a name
was done in the above example with the statement:

program level_check

As we’ll see in the next example, we can have multiple state transition diagrams in
state program. In SNL terms these are referred to asstate sets.Each state program may
have one or more named state sets. This was denoted by the statement block:

ss volt_check { ... }

2.4 Adding a Second State Set

We will now add a second state set to the previous example. This new state set gene
changing value as its output (a triangle function with amplitude 11).

First, we add the following lines to the declaration:

float vout;
float delta;
assign vout to “Output_voltage”;

Next we add the following lines after the first state set:

ss generate_voltage {
state init {

when () {
vout = 0.0;
pvPut(vout);
delta = 0.2;

} state ramp
}
state ramp {

when (delay(0.1)) {
if ((delta > 0.0 && vout >= 11.0) ||
 (delta < 0.0 && vout <= -11.0))

delta = -delta; /* change direction */
vout += delta;

} state ramp;
EPICS Release: R3.14 State Notation Language Concepts 9

Chapter 2: State Notation Language Concepts
Variable Names Using Macros

f the
tial
the
The

The
lue

ead
ntrol
e the

mes
our

m a

. See
}
}

The above example exhibits several concepts. First, note that thewhen statement in state
init contains an empty event expression. This means unconditional execution o
transition. Becauseinit is the first state in the state set, it is assumed to be the ini
state. You will find this to be a convenient method for initialization. Also, notice that
ramp state always returns to itself. This is a permissible and often useful construct.
structure of this state set is shown in the STD in Figure 2-2 on page 10.

The final concept introduced in the last example is thedelay function. This function
returns aTRUEvalue after a specified time interval from when the state was entered.
parameter todelay specifies the number of seconds, and must be a floating point va
(constant or expression).

At this point, you may wish to try an example with the two state sets. You can jump ah
and read parts of Chapters 3-5. You probably want to pick unique names for your co
system variables, rather than the ones used above. You may also wish to replac
pvPut statements withprintf statements to display “High ” and “Low” on your
console.

2.5 Variable Names Using Macros

One of the features of the SNL and run-time sequencer is the ability to specify the na
of control system variables at run-time. This is done by using macro substitution. In
example we could replace theassign statements with the following:

assign v to “{unit}:ai1”;
assign vout to “{unit}:ao1”;

The string within the curly brackets is a macro which has a name (“unit ” in this case). At
run-time you give the macro a value, which is substituted in the above string to for
complete control system variable name. For example, if the macro “unit ” is given a
name “DTL_6:CM_2”, then the run-time variable name is “DTL_6:CM_2:ai1 ”. More
than one macro may be specified within a string, and the entire string may be a macro
Section 4.3 on page 27 for more on macros.

Figure 2-2: Structure of generate_voltage State Set

START

init

ramp
10 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Data Types

bles
clared
ersion

lity to
can

g

) and
2.6 Data Types

The allowable variable declaration types correspond to the C types:char , unsigned
char , short , unsigned short , int , unsigned int , long , unsigned long ,
float , anddouble . In addition there is the typestring , which is a fixed array size of
type char (at the time of writing, a string can hold 40 characters). Sequencer varia
having any of these types may be assigned to a control system variable. The type de
does not have to be the same as the native control system value type. The conv
between types is performed at run-time.

You may specify array variables as follows:

long arc_wf[1000];

When assigned to a control system variable, operations such aspvPut are performed for
the entire array.

2.7 Arrays of Variables

Often it is necessary to have several associated control system variables. The abi
assign each element of an SNL array to a separate control system variable
significantly reduce the code complexity. The following illustrates this point:

float Vin[4];
assign Vin[0] to “{unit}1”;
assign Vin[1] to “{unit}2”;
assign Vin[2] to “{unit}3”;
assign Vin[3] to “{unit}4”;

We can then take advantage of theVin array to reduce code size as in the followin
example:

for (i = 0; i < 4; i++) {
Vin[i] = 0.0;
pvPut (Vin[i]);

}

We also have a shorthand method for assigning channels to array elements:

assign Vin to { “{unit}1”, “{unit}2”, “{unit}3”, “{unit}4” };

Similarly, the monitor declaration may be either by individual element:

monitor Vin[0];
monitor Vin[1];
monitor Vin[2];
monitor Vin[3];

Alternatively, we can do this for the entire array:

monitor Vin;

And the same goes when synchronizing with event flags (Section 2.10 on page 13
queuing monitors (Section 2.11 on page 14). SNL arrays are really quite powerful.

Double subscripts offer additional options.

double X[2][100];
assign X to {“apple”, “orange”};
EPICS Release: R3.14 State Notation Language Concepts 11

Chapter 2: State Notation Language Concepts
Dynamic Assignment

ices
with a
ld the
mber

ted,

the

it is

u can
The declaration creates an array with 200 elements. The first 100 elements ofX are
assigned to (array)apple , and the second 100 elements are assigned to (array)orange .

It is important to understand the distinction between the first and second array ind
here. The first index defines a 2-element array of which each element is associated
control system variable. The second index defines a 100-element double array to ho
value of each of the two control system variables. When used in a context where a nu
is expected, both indices must be specified,e.g. X[1][49] is the 50th element of the
value oforange . When used in a context where a control system variable is expec
e.g. with pvPut , then only the first index should be specified,e.g.X[1] for orange .

2.8 Dynamic Assignment

You may dynamically assign or re-assign variable to control system variables during
program execution as follows:

float Xmotor;
assign Xmotor to “Motor_A_2”;
...

sprintf (pvName, “Motor_%s_%d”, snum, mnum)
pvAssign (Xmotor[i], pvName);

An empty string in the assign declaration implies no initial assignment:

assign Xmotor to “”;

Likewise, an empty string can de-assign a variable:

pvAssign(Xmotor, “”);

The current assignment status of a variable is returned by thepvAssigned function as
follows:

isAssigned = pvAssigned(Xmotor);

The number of assigned variables is returned by thepvAssignCount function as
follows:

numAssigned = pvAssignCount();

The following inequality will always hold:

pvConnectCount() <= pvAssignCount() <= pvChannelCount()

Having assigned a variable, you should wait for it to connect before using it (although
OK to monitor it). See Section 2.14 on page 16.

2.9 Status of Control System Variables

Control system variables have an associated status, severity and time stamp. Yo
obtain these with thepvStatus , pvSeverity and pvTimeStamp functions. For
example:

when (pvStatus(x_motor) != pvStatOK) {
printf(“X motor status=%d, severity=%d, timestamp=%d\n”,

pvStatus(x_motor), pvSeverity(x_motor),
pvTimeStamp(x_motor).secPastEpoch);
12 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Synchronizing State Sets with Event Flags

everity
rd

now

flags.
t flag
flag
tor is
ve to
nnel

ur for

l to a
as

trol
er a
h an
...

These routines are described in Section 5.1 on page 29. The values for status and s
are defined in the include filepvAlarm.h , and the time stamp is returned as a standa
EPICS TS_STAMPstructure, which is defined intsStamp.h . Both these files are
automatically included when compiling sequences (but the SNL compiler doesn’t k
about them, so you will get warnings when using constants likepvStatOK or tags like
secPastEpoch).

2.10 Synchronizing State Sets with Event Flags

State sets within a state program may be synchronized through the use of event
Typically, one state set will set an event flag, and another state set will test that even
within a when clause. Thesync statement may also be used to associate an event
with a control system variable that is being monitored. In that case, whenever a moni
delivered, the corresponding event flag is set. Note that this provides an alternati
testing the value of the monitored channel and is particularly valuable when the cha
being tested is an array or when it can have multiple values and an action must occ
any change.

This example shows a state set that forces a low limit always to be less than or equa
high limit. The first when clause fires when the low limit changes and someone h
attempted to set it above the high limit. The secondwhen clause fires when the opposite
situation occurs.

double loLimit;
assign loLimit to “demo:loLimit”;
monitor loLimit;
evflag loFlag;
sync loLimit loFlag;

double hiLimit;
assign hiLimit to “demo:hiLimit”;
monitor hiLimit;
evflag hiFlag;
sync hiLimit hiFlag;

ss limit {
state START {

when (efTestAndClear(loFlag) && loLimit > hiLimit) {
hiLimit = loLimit;
pvPut(hiLimit);

} state START

when (efTestAndClear(hiFlag) && hiLimit < loLimit) {
loLimit = hiLimit;
pvPut(loLimit);

} state START
}

}

The event flag is actually associated with the SNL variable, not the underlying con
system variable. If the SNL variable is an array then the event flag is set whenev
monitor is posted on any of the control system variables that are associated wit
element of that array.
EPICS Release: R3.14 State Notation Language Concepts 13

Chapter 2: State Notation Language Concepts
Queuing Monitors

uence
es it

hat a
ssion.
h
of

se of

both

uld

on any

ata
the

until
plete
2.11 Queuing Monitors

Neither testing the value of a monitored channel in awhen clause nor associating the
channel with an event flag and then testing the event flag can guarantee that the seq
is aware of all monitors posted on the channel. Often this doesn’t matter, but sometim
does. For example, a variable may transition to 1 and then back to 0 to indicate t
command is active and has completed. These transitions may occur in rapid succe
This problem can be avoided by using thesyncQ statement to associate a variable wit
both a queue and an event flag. ThepvGetQ function retrieves and removes the head
queue.

This example illustrates a typical use ofpvGetQ : setting a command variable to 1 and
then changing state as an active flag transitions to 1 and then back to 0. Note the u
pvFreeQ to clear the queue before sending the command. Note also that, ifpvGetQ
hadn’t been used then the active flag’s transitions from 0 to 1 and back to 0 might
have occurred before thewhen clause in thesent state fired.

long command; assign command to “commandVar”;

long active; assign active to “activeVar”; monitor active;
evflag activeFlag; syncQ active activeFlag;

state start {
when () {

pvFreeQ(active);
command = 1;
pvPut(command);

} state sent
}

state sent {
when (pvGetQ(active) && active) {
} state high

}

state high {
when (pvGetQ(active) && !active) {
} state done

}

The active SNL variable could have been an array in the above example. It co
therefore have been associated with a set of related control systemactive flags. In this
case, the queue would have had an entry added to it whenever a monitor was posted
of the underlying control systemactive flags.

2.12 Asynchronous Use of pvGet()

Normally thepvGet operation completes before the function returns, thus ensuring d
integrity. However, it is possible to use these functions asynchronously by specifying
+a compiler flag (see Section 3.4 on page 20). The operation might not be initiated
the action statements in the current transition have been completed and it could com
at any later time. To test for completion use the functionpvGetComplete , which is
described in “pvMonitor” on page 36.
14 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Asynchronous Use of pvPut()

the
by

r

ve all

h put
pvGet also accepts an optionalSYNCor ASYNCargument, which overrides the+a
compiler flag. For example:

pvGet(initActive[i], ASYNC);

2.13 Asynchronous Use of pvPut()

Normally thepvPut operation completes asynchronously. In the past it has been
responsibility of the programmer to ensure that the operation completed (typically
monitoring other variables). However, the functionpvPutComplete can now be used
for this. Also, while the+a compiler flag does not affect put operations,pvPut , like
pvGet , accepts an optionalSYNCor ASYNCargument, which forces a synchronous o
asynchronous put. For example:

pvPut(init[i], SYNC);

pvPutComplete supports arrays and can be used to check whether a set of puts ha
completed. This example illustrates how to manage a set of parallel commands.

#define N 3
long init[N];
long done[N]; /* used in the modified example below */
assign init to {“ss1:init”, “ss2:init”, “ss3:init”};

state inactive {
when () {

for (i = 0; i < N; i++) {
init[i] = 1;
pvPut(init[i], ASYNC);

}
} state active

}

state active {
when (pvPutComplete(init)) {
} state done

when (delay(10.0)) {
} state timeout

}

pvPutComplete also supports optional arguments to wake up the state set as eac
completes. The following could be inserted before the firstwhen clause in theactive
state above. TheTRUEargument causespvPutComplete to returnTRUEwhen any
command completed (rather than only when all commands complete). Thedone
argument is the address of along array of the same size asinit ; its elements are set to
0 for puts that are not yet complete and to 1 for puts that are complete.

when (pvPutComplete(init, TRUE, done)) {
for (i = 0; i < N; i++)

printf(" %ld", done[i]);
printf("\n");

} state active
EPICS Release: R3.14 State Notation Language Concepts 15

Chapter 2: State Notation Language Concepts
Connection Management

API.
cted.
ing

the
g

or re-
status

s to

itor
sage
vent
ge 13

s. If
re than
objects

riables

r the
array
the
2.14 Connection Management

All control system variable connections are handled by the sequencer via the PV
Normally the state programs are not run until all control system variables are conne
However, with the-c compiler flag, execution begins while the connections are be
established. The program can test for each variable’s connection status with
pvConnected routine, or it can test for all variables connected with the followin
comparison (if not using dynamic assignment, Section 2.8 on page 12,pvAssignCount
will be the same aspvChannelCount):

pvConnectCount() == pvAssignCount()

These routines are described in Section 5.6 on page 35. If a variable disconnects
connects during execution of a state program, the sequencer updates the connection
appropriately; this can be tested in awhen clause, as in:

when (pvConnectCount() < pvAssignCount()) {
} state disconnected

When using dynamic assignment, you should wait for the newly assigned variable
connect, as in:

when (pvConnectCount() == pvAssignCount()) {
} state connected
when (delay(10)) {
} state connect_timeout

Note that the connection callback may be delivered before or after the initial mon
callback (the PV API does not specify the behavior, although the underlying mes
system may do so). If this matters to you, you should synchronize the value with an e
flag and wait for the event flag to be set before proceeding. See Section 2.10 on pa
for an example.

2.15 Multiple Instances and Reentrant Object Code

Occasionally you will create a state program that can be used in multiple instance
these instances run in separate address spaces, there is no problem. However, if mo
one instance must be executed simultaneously in a single address space, then the
must be made reentrant using the+r compiler flag. With this flag all variables are
allocated dynamically at run time; otherwise they are declared static. With the+r flag all
variables become elements of a common data structure, and therefore access to va
is slightly less efficient.

2.16 Control System Variable Element Count

All requests for control system variables that are arrays assume the array size fo
element count. However, if the control system variable has a smaller count than the
size, the smaller number is used for all requests. This count is available with
pvCount function. The following example illustrates this:

float wf[2000];
assign wf to “{unit}:CavField.FVAL”;
int LthWF;
16 State Notation Language Concepts Document Revision: 1

Chapter 2: State Notation Language Concepts
Control System Variable Element Count
...
LthWF = pvCount(wf);
for (i = 0; i < LthWF; i++) {

...
}
pvPut(wf);
...
EPICS Release: R3.14 State Notation Language Concepts 17

Chapter 2: State Notation Language Concepts
Control System Variable Element Count
18 State Notation Language Concepts Document Revision: 1

Chapter 3: Compiling a State Program

The sequencer is distributed as an EPICS R3.14makeBaseApp application. The first

cular
use

tion
sections of this chapter show how to build a Unix sequence independent of any parti
build environment. These sections are followed by a section describing how to
makeBaseApp to build sequences. See Chapter 3: on page 19 for installa
instructions.
files

ode,
y be
3.1 Files needed

In order to compile and run an EPICS sequence, a C/C++ compiler and the following
are required.

1. snc , the SNL compiler

2. sequencer include filesseqCom.h andpvAlarm.h

3. EPICS include filesshareLib.h , epicsTypes.h andtsStamp.h

4. if using the+mcompiler option, EPICS include filesosiThread.h , osiSem.h ,
errlog.h andtaskwd.h (and files included by them)

5. sequencer librarieslibseq , libpv and libpvXxx (for message systems,e.g.
libpvCa for CA); on an IOC, these are linked intoseqLibrary and
pvLibrary

6. libraries for any message systems other than CA

7. EPICS librarieslibca (if using CA) andlibCom ; on an IOC, these are linked
into iocCoreLibrary

3.2 The State Notation Compiler

The state notation compiler (SNC) converts the state notation language (SNL) into C c
which is then compiled to produce a run-time object module. The C pre-processor ma
used prior to SNC. If we have a state program file namedtest.st then the steps to
compile are similar to the following:

snc test.st
gcc -c test.c -o test.o ...additional compiler options
gcc test.o -o test ...additional loader options
EPICS Release: R3.14 Compiling a State Program 19

Chapter 3: Compiling a State Program
Name of output file

l

cter
s the

is

is

egin

to all
Alternatively, using the C pre-processor:

gcc -E -x c test.st >test.i
snc test.i
gcc -c test.c -o test.o ...additional compiler options
gcc test.o -o test ...additional loader options

Using the C pre-processor allows you to include SNL files (#include directive), to use
#define directives, and to perform conditional compiling (e.g.#ifdef).

3.3 Name of output file

The output file name will that of the input file with the extension replaced with.c . The
-o option can be used to override the output file name.

Actually the rules are a little more complex that the above:.st and single-character
extensions are replaced with.c ; otherwise.c is appended to the full file name. In al
cases, the-o compiler option overrides.

3.4 Compiler Options

SNC provides 8 compiler options. You specify the option by specifying a key chara
preceded by a plus or minus sign. A plus sign turns the option on, and a minus turn
option off. The options are:

+a AsynchronouspvGet , i.e. the program will proceed before the operation
completed.

-a pvGet returns after the operation is completed. This is the default if an option
not specified.

+c Wait for all database connections before allowing the state program to b
execution. This is the default.

-c Allow the state program to begin execution before connections are established
channel.

+d Turn on run-time debug messages.

-d Turn off run-time debug messages. This is the default.

SNC CC

CPP SNC CC

test.st test.c test.o

test.otest.ctest.itest.st

Figure 3-1: Two Methods of Compiling a State Program
20 Compiling a State Program Document Revision: 1

Chapter 3: Compiling a State Program
Compiler Errors

is the

state

the

aborts
Such
ine

NL

ample
These

e role

and
cer is
+e Use the new event flag mode. This is the default.

-e Use the old event flag mode (clear flags after executing a when statement).

+l Produce C compiler error messages with references to source (.st) lines. This
default.

-l Produce C compiler error messages with references to .c file lines.

+m Generate a Unix C main program (a wrapper around a call to theseq function).

-m Do not produce a Unix C main program. This is the default.

+r Make the run-time code reentrant, thus allowing more than one instance of the
program to run on an IOC.

-r Run-time code is not reentrant, thus saving start-up time and memory. This is
default.

+w Display SNC warning messages. This is the default.

-w Suppress SNC warnings.

Options may also be included within the declaration section of a state program:

option +r;
option -c;

3.5 Compiler Errors

The SNC detects most errors, displays an error message with the line number, and
further compilation. Some errors may not be detected until the C compilation phase.
errors will display the line number of the SNL source file. If you wish to see the l
number of the C file then you should use the-l (“ell”) compiler option. However, this is
not recommended unless you are familiar with the C file format and its relation to the S
file.

3.6 Compiler Warnings

Certain inconsistencies detected by the SNC are flagged with error messages. An ex
would be a variable that is used in the SNL context, but declared in escaped C code.
warnings may be suppressed with the-w compiler option.

3.7 Compiling and Linking a State Program under Unix

Under Unix, either the+mcompiler option should be used to create a C main program or
else the programmer should write a main program (the main program plays the sam
as the VxWorks startup script).

Here is a full build of a simple state program from source under Solaris. Compiler
loader options will vary with other operating systems. It is assumed that the sequen
in /usr/local/epics/seq and that EPICS is in/usr/local/epics .
EPICS Release: R3.14 Compiling a State Program 21

Chapter 3: Compiling a State Program
Using makeBaseApp

er 8:

is
gcc -E -x c demo.st >demo.i

snc +m demo.i

gcc -D_POSIX_C_SOURCE=199506L -D_POSIX_THREADS -D_REENTRANT \
-D__EXTENSIONS__ -DnoExceptionsFromCXX \
-DOSITHREAD_USE_DEFAULT_STACK \
-I. -I.. \
-I/usr/local/epics/seq/include \
-I/usr/local/epics/base/include/os/solaris \
-I/usr/local/epics/base/include -c demo.c

g++ -o demo \
-L/usr/local/epics/seq/lib/solaris-sparc \
-L/usr/local/epics/base/lib/solaris-sparc \
demo.o -lseq -lpv -lpvCa -lca -lCom \
-lposix4 -lpthread -lthread -lsocket -lnsl -lm

The main program generated by the+m compiler option is very simple. Here it is:

/* Main program */
#include "osiThread.h"
#include "errlog.h"
#include "taskwd.h"

int main(int argc,char *argv[]) {
 char *macro_def = (argc>1)?argv[1]:NULL;
 threadInit();
 errlogInit(0);
 taskwdInit();
 return seq((void *)&demo, macro_def, 0);
}

The arguments are essentially the same as those taken by theseq routine.

3.8 Using makeBaseApp

The sequencer is distributed as an EPICS R3.14makeBaseApp application. This section
doesn’t describe how to install and build the sequencer itself (for that, refer to Chapt
on page 59); instead, it describes how to build a sequencer application.

Makefile Assume a sequencer indemo.st . This sequencer will use the CA message system. It
to be linked into a Unix program calleddemo and a VxWorks object file calleddemo.o .
Also assume that the sequencer includes and libraries can be accessed viaSEQ(and that
SEQ_LIB is defined; see Section 8.7 on page 63). The followingMakefile does the
job.

TOP = ../..
include $(TOP)/configure/CONFIG

SNCFLAGS = +m

SEQS = demo
PROD = $(SEQS)
OBJS_vxWorks = $(SEQS)
22 Compiling a State Program Document Revision: 1

Chapter 3: Compiling a State Program
Using makeBaseApp

I

PROD_LIBS += seq pv pvCa ca Com
seq_DIR = $(SEQ_LIB)

include $(TOP)/configure/RULES

Make output When I build with the aboveMakefile on my Solaris machine with a Power PC IOC
get the following output:

% gmake

gnumake -C O.solaris-sparc -f ../Makefile TOP=../../.. \
T_A=solaris-sparc install

preprocessing demo.st
/usr/local/bin/gcc -x c -E -D_POSIX_C_SOURCE=199506L \

-D_POSIX_THREADS -D_REENTRANT -D__EXTENSIONS__ \
-DnoExceptionsFromCXX -DOSITHREAD_USE_DEFAULT_STACK \
-DUNIX -I. -I/home/wlupton/epics/seq/include \
-I../../../include/os/solaris -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/solaris \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. ../demo.st > demo.i

converting demo.i
/home/wlupton/epics/seq/bin/solaris-sparc/snc +m demo.i
/usr/local/bin/gcc -ansi -pedantic -D_POSIX_C_SOURCE=199506L \

-D_POSIX_THREADS -D_REENTRANT -D__EXTENSIONS__ \
-DnoExceptionsFromCXX -DOSITHREAD_USE_DEFAULT_STACK \
-DUNIX -O3 -g -g -Wall -I. -I/home/wlupton/epics/seq/include \
-I../../../include/os/solaris -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/solaris \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. -c demo.c

/usr/local/bin/g++ -ansi -pedantic -Wtraditional -o demo \
-L/home/wlupton/epics/anl/base/lib/solaris-sparc/ \
-L/home/wlupton/epics/seq/lib/solaris-sparc/ \
-R/home/wlupton/epics/anl/base/lib/solaris-sparc/ \
-R/home/wlupton/epics/seq/lib/solaris-sparc/ demo.o \
-lseq -lpv -lpvCa -lca -lCom -lposix4 -lpthread -lthread \
-lsocket -lnsl -lm

Installing binary ../../../bin/solaris-sparc/demo

gnumake -C O.vxWorks-ppc604 -f ../Makefile TOP=../../.. \
T_A=vxWorks-ppc604 install

preprocessing demo.st
GCC_EXEC_PREFIX=/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \

/usr/local/vw/t2/host/sun4-solaris2/bin/ccppc -nostdinc -x c \
-E -nostdinc -DnoExceptionsFromCXX -DCPU=PPC604 -DvxWorks -I. \
-I/home/wlupton/epics/seq/include \
-I../../../include/os/vxWorks -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/vxWorks \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. \
-I/usr/local/vw/t2/target/h ../demo.st > demo.i

converting demo.i
EPICS Release: R3.14 Compiling a State Program 23

Chapter 3: Compiling a State Program
Using makeBaseApp
/home/wlupton/epics/seq/bin/solaris-sparc/snc +m demo.i
GCC_EXEC_PREFIX=/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \

/usr/local/vw/t2/host/sun4-solaris2/bin/ccppc -nostdinc -ansi \
-pedantic -B/usr/local/vw/t2/host/sun4-solaris2/lib/gcc-lib/ \
-nostdinc -DnoExceptionsFromCXX -DCPU=PPC604 -DvxWorks -O2 -g \
-Wall -mcpu=604 -mlongcall -fno-builtin -I. \
-I/home/wlupton/epics/seq/include \
-I../../../include/os/vxWorks -I../../../include \
-I/home/wlupton/epics/anl/base/include/os/vxWorks \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/anl/base/include \
-I/home/wlupton/epics/seq/include -I.. \
-I/usr/local/vw/t2/target/h -c demo.c

Installing binary ../../../bin/vxWorks-ppc604/demo.o
24 Compiling a State Program Document Revision: 1

state
Chapter 4: Using the Run Time Sequencer

In the previous chapter you learned how to create and compile some simple

can
programs. In this chapter you will be introduced to the run-time sequencer so that you

execute your state program.
cked

y. The
file
nd

the
g

rt-up

)
the
4.1 VxWorks-specific instructions

Note that the latest sequencer version has not, at the time of writing, been fully che
out under VxWorks.

Loading the
sequencer

The sequencer is unbundled from EPICS base and so must be loaded separatel
sequencer is loaded into an IOC by the VxWorks loader from object files on the UNIX
system. Assuming the IOC’s working directory is set properly, the following comma
will load the sequencer object code:

ld < pvLibrary
ld < seqLibrary

Loading a State
Program

State programs are loaded into an IOC by the VxWorks loader from object files on
UNIX file system. Assuming the IOC’s working directory is set properly, the followin
command will load the object file “example.o”:

ld < example.o

This can be typed in from the console or put into a script file, such as the VxWorks sta
file.

Executing the State
Program

Let’s assume that the program name (from theprogram statement in the state program
is “level_check”. Then to execute the program under VxWorks you would use
following command:

seq &level_check
EPICS Release: R3.14 Using the Run Time Sequencer 25

Chapter 4: Using the Run Time Sequencer
Unix-specific instructions

te set
rks

,
iated

am
eter is

d

an type
This will create one task for each state set in the program. The task ID of the first sta
task will be displayed. You can find out which tasks are running by using the VxWo
“ i ” command.

Examining the State
Program

You can examine the state program by typing:

seqShow level_check

This will display information about each state set (e.g. state set names, current state
previous state). You can display information about the control system variables assoc
with this state program by typing either of:

seqChanShow level_check
seqChanShow level_check, “DTL_6:CM_2:ai1”
seqChanShow level_check, “-”

You can display information about monitor queues by typing:

seqQueueShow level_check

The first parameter toseqShow, seqChanShow andseqQueueShow is either the task
identifier (tid) or theunquotedtask name of the state program task. If the state progr
has more than one tid or name, then any one of these can be used. The second param
a valid channel name, or “- ” to show only those channels which are disconnected, or “+”
to show only those channels which are connected. TheseqChanShow and
seqQueueShow utilities will prompt for input after showing the first or the specifie
channel; enter<Enter> or a signed number to view more channels or queues; enter “q” to
quit.

If you wish to see the task names, state set names, and task identifiers forall state
programs type:

seqShow

Stopping the State
Program Tasks

You can no longer directly delete state program tasks. Instead, you must useseqStop .

seqStop level_check

The parameter toseqStop is either the task identifier (tid) or theunquotedtask name of
the state program task.

A state program can no longer delete itself.

4.2 Unix-specific instructions

Executing the State
Program

Under Unix, you execute the state program directly. You might type the following:

level_check

Once the state set threads have been created, the console remains active and you c
commands as described below.

Examining the state
program

The following commands can be issued under Unix (hit "?" to obtain the list):

commands (abbreviable):
 i - show all threads
26 Using the Run Time Sequencer Document Revision: 1

Chapter 4: Using the Run Time Sequencer
Specifying Run-Time Parameters

oses:

tring

n
n the

last

ning

with
 all - show all sequencers
 channels - show all channels
 + - show conn. channels
 - - show disc. channels
 queues - show queues
 statesets - show state-sets
 <EOF> - exit

As you see, all commands can be abbreviated to a single character.

Stopping the State
Program Tasks

A state program may be killed by sending it aSIGTERM(Ctrl-C) signal (this is an untidy
exit, but who cares?) or by entering an<EOF> (Ctrl-D) character. The latter calls
seqStop and is a tidy exit.

4.3 Specifying Run-Time Parameters

You can specify run-time parameters to the sequencer. Parameters serve three purp

1. macro substitution in process variable names,

2. for use by your state program, and

3. as special parameters to the sequencer.

You can pass parameters to your state program at run time by including them in a s
with the following format:

“ param1=value1, param2=value2, ...”

This same format can be used in theprogram statement’s parameter list (Section 5.2 o
page 29). Parameters specified on the command-line override those specified i
program statement.

VxWorks For example, if we wish to specify the value of the macro “unit” in the example in the
chapter, we would execute the program with the following command:

seq &level_check, “unit=DTL_6:CM_2”

Unix This works just the same under Unix. The above example becomes:

level_check “unit=DTL_6:CM_2”

Access within
program

Parameters can be accessed by your program with the functionmacValueGet , which is
described in Section on page 38. The following built-in parameters have special mea
to the sequencer:

debug = level

Sets a logging level.level-1 is passed on to the PV API. Can be used in user code.

logfile = filename

This parameter specifies the name of the logging file for the run-time tasks associated
the state program. If none is specified then all log messages are written tostdout .

name = thread_name
EPICS Release: R3.14 Using the Run Time Sequencer 27

Chapter 4: Using the Run Time Sequencer
Sequencer Logging

cifies

value

y case

of a

e
the
in

d. For

tate is
ly,
Normally the thread names are derived from the program name. This parameter spe
an alternative base name for the run-time threads.

priority = task_priority

This parameter specifies the initial task priority when the tasks are created. The
task_priority must be an integer between 0 and 99 (it’s ignored under Unix).

stack = stack_size

This parameter specifies the stack size in bytes (its use is deprecated, and it is in an
ignored under Unix).

4.4 Sequencer Logging

The sequencer logs various information that could help a user determine the health
state program. Logging uses theerrlogPrintf function and will be directed to the
IOC log file if the IOC log facility has been initialized. Under VxWorks this is don
automatically but under Unix it must be done by the programmer. This can be done in
main program (if you are writing it yourself) or in the entry handler, which is executed
the context of the first state set before the remaining state sets have been create
example:

entry {
#ifdef UNIX
%%#include "logClient.h"
 iocLogInit();
#endif
}

The programmer may log information usingerrlogPrintf directly or else by using
the seqLog function. By default,seqLog output goes tostdout , but it may be
directed to any file by specifying thelogfile parameter as described above.

4.5 What Triggers an Event?

There are five types of sequencer event:

• a control system variable monitor is posted

• an asynchronouspvGet or pvPut completes

• a time delay elapses

• an event flag is set or cleared

• a control system variable connects or disconnects

When one of these events occur, the sequencer executes the appropriatewhen statements
based on the current states and the particular event or events. Whenever a new s
entered, the correspondingwhen statements for that state are executed immediate
regardless of the occurrence of any of the above events.

Prior to Version 1.8 of the sequencer, event flags were cleared after awhen statement
executed. Currently, event flags must be cleared with eitherefTestAndClear or
efClear , unless the-e compiler option was chosen.
28 Using the Run Time Sequencer Document Revision: 1

BNF
Chapter 5: State Notation Language Syntax

This chapter formalizes the state notation language syntax using a variant of

(Backus-Naur Form).
ome

m is

if the
5.1 Typographical conventions

The idea is that the meaning will be clear without explanation. However, here are s
explanatory notes.

• words and symbols inteletype font are to be taken literally (“terminals”)

• words in bold italics are syntactic terms which will be defined below
(“nonterminals”), except in a few cases where the meaning is obvious

• where the name of a nonterminal is enclosed in square brackets, that ter
optional

• where a term is followed by an ellipsis (...), it may optionally be repeated (so if the
term was not optional this means that there can be one or more instances of it;
term was optional this means that there can be zero or more instances of it)

• where a term is followed by a separator (e.g.a comma) and an ellipsis, it is to be
understood that the separator will separate each repeated instance of the term

5.2 State Program

program program program_name[(" parameter_list")] ;

[entry_handler]
definition...
state_set...
[exit_handler]
EPICS Release: R3.14 State Notation Language Syntax 29

Chapter 5: State Notation Language Syntax
Definitions

tains
le is
the

n the
those

s run
nd is

ge 34.
ode.

ame

e
read
ws:

ge 34.
ode.

ame

ing,
per
program_name The name of the program. This is used as the name of the global variable which con
or points to all the state program data structures (the address of this global variab
passed to theseq function when creating the run-time sequencer). It is also used as
base for the state set thread names unless overridden via thename parameter (Section 4.3
on page 27).

parameter_list A list of comma-separated parameters in the same form as they are specified o
command line (Section 4.3 on page 27). Command-line parameters override
specified here.

definition See Section 5.3 on page 30.

entry_handler A state program may specify entry code to run prior to state set thread creation. This i
in the context of the first state set thread, before the other threads are created a
specified as follows:

entry {
[statement]...;

}

The entry code consists of zero or more statements as described in Section 5.5 on pa
However, no control system variable access functions may be called within the entry c

This handler should not be confused with the entry block of a state, which has the s
syntax, but is executed at each transition to a new state.

state_set See Section 5.4 on page 32.

exit_handler When a state program is stopped viaseqStop , all state set threads within the stat
program are deleted. The state program may specify exit code to run prior to th
deletion. This is run in the context of the first state set thread and is specified as follo

exit {
[statement]...;

}

The exit code consists of zero or more statements as described in Section 5.5 on pa
However, no control system variable access functions may be called within the exit c

This handler should not be confused with the exit block of a state, which has the s
syntax, but is executed at each transition from a state to the next state.

5.3 Definitions

definition definition = decl_stmt | assign_stmt | monitor_stmt | sync_stmt | syncq_stmt |
compiler_option_stmt

decl_stmt Variable declarations are similar to C except that the types are limited to the follow
only scalar initialization is permitted, and only one variable may be declared
declaration statement.

char variable_name;
30 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
Definitions

ant
s.

after,
all

races,
C

of the
tive
ot be

ored
trol
short variable_name;
int variable_name;
long variable_name;
float variable_name;
double variable_name;
string variable_name;
evflag event_flag_name;

Type string produces an array of char with length equal to the const
MAX_STRING_SIZE, which is defined (as 40) in one of the included header file
Unsigned types and pointer types may also be specified. For example:

unsigned short * variable_name;

Variables may also be declared as arrays.

char variable_name[array_length];
short variable_name[array_length];
int variable_name[array_length];
long variable_name[array_length];
float variable_name[array_length];
double variable_name[array_length];
char variable_name[array_length][array_length];
short variable_name[array_length][array_length];
int variable_name[array_length][array_length];
long variable_name[array_length][array_length];
float variable_name[array_length][array_length];
double variable_name[array_length][array_length];

Note that arrays of strings and event flags are not implemented.

assign_stmt Once a variable is declared, it may be assigned to a control system variable. There
that variable is used to interact with the underlying control system. The following are
variations on assignment (note that the “to ” is optional):

assign variable_name [to] “ variable_name” ;

assign variable_name[index] [to] “ variable_name” ;

assign variable_name [to] { “ variable_name”, ... } ;

A control system variable name may contain one or more macro names enclosed in b
as in “{sys}{sub}voltage ”. Macros are named following the same rules as
language variables.

For control system variables declared as arrays, the requested count is the length
array or the native count for the underlying variable, whichever is smaller. The na
count is determined when the initial connection is established. Pointer types may n
assigned to control system variables.

monitor_stmt To make the state program event-driven, input variables can be monitored. Monit
variables are automatically updated with the current value of the underlying con
system variable (the variable must first be assigned to a control system variable).

monitor variable_name;
monitor variable_name[index];
EPICS Release: R3.14 State Notation Language Syntax 31

Chapter 5: State Notation Language Syntax
State Sets

thus
of the
t was

th an
stem
basis.
able’s
ueue

n the

d only
a

sync_stmt An event flag can be associated with an SNL variable (which may be an array, and
associated with several control system variables). When a monitor is posted on any
associated control system variables, the corresponding event flag is set (even if i
already set). Note that the “to ” is optional.

sync variable_name [to] event_flag_name;
sync variable_name[index] [to] event_flag_name;

syncq_stmt An event flag can be associated with a monitor queue which, in turn, is associated wi
SNL variable (which may be an array, and thus associated with several control sy
variables). The queue size defaults to 100 but can be overridden on a per-queue
When a monitor is posted on any of the associated control system variables, the vari
value is written to the end of the queue and the corresponding event flag is set. If the q
is already full, the last entry is overwritten. Only scalar items can be accommodated i
queue (if the variable is array-valued, only the first item will be saved). ThepvGetQ
function reads items from the queue.

syncQ variable_name [to] event_flag_name [queue_size];

syncQ variable_name[index] [to] event_flag_name [queue_size];

Note that the square brackets around “to ” and queue_sizeindicate optional items rather
than literal square brackets.

compiler_option_stmt A compiler option is specified as follows:

option compiler_option_name;

Possible compiler options are given in Section 3.4 on page 20, and must include the “+” or
“ - ” sign. Example:

option +r; /* make code reentrant */

5.4 State Sets

state_set ss state_set_name {
state_def...

}

state_set_name The name of the state set. The normal C variable naming rules apply.

state_def state state_name {
[state_option_stmt]...
[entry_action]...
event_action...
[exit_action]...

}

state_name The name of the state. The normal C variable naming rules apply. State names nee
be unique within the state set (e.g. each state set within a state program could have
start state).
32 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
State Sets

ame

om a

tate.

n
an

ne of

ks of
state_option_stmt A state option is specified as follows:

option state_option_name;

Currently there are three allowable options,t , e and x . The option string must be
preceded by a “+” or “ - ”, for instanceoption -te .

The options are:

-t Don’t reset the time specifying when the state was entered if coming from the s
state. When this option is used thedelay function will return whether the given
time delay has elapsed from the moment the current state was entered fr
different state, rather than from when it was entered for the current iteration.

-e Executeentry blocks even if the previous state was the same as the current s

-x Executeexit blocks even if the next state is the same as the current state.

+t , +e and+x are also permitted, though “+” is interpreted as “perform the default action
for this option”. For instanceoption +tx would have the same effect as if no optio
specification were given fort andx , so its use is only documentary. Note that more th
one option line is allowed, and that syntax must be used to specify both “+” and “- ”
options, for example:

state low {
option -e; /* Do entry{} every time ... */
option +x; /* but only do exit{} when really leaving */
entry { ... }
...
exit { ... }

}

entry_action entry {
[statement]...

}

entry blocks are executed when the state is entered. There can be more than o
them.

event_action when (expression) {
[statement]...

} state new_state

new_state The name of the new state to enter. This can be the current state.

exit_action exit {
[statement]...

}

exit blocks are executed when the state is left. See the options-e and -x above for
more details about controlling this behavior. Note that the statements in all entry bloc
a state are executed before any of the expressions inwhen conditions are evaluated.
EPICS Release: R3.14 State Notation Language Syntax 33

Chapter 5: State Notation Language Syntax
Statements and Expressions

are not

of the
SNL
(a side-
tags

s. Note

a-
5.5 Statements and Expressions

statement { [statement]... } |
expression; |
if (expression) statement |
else statement |
while (expression) statement |
for (expression; expression; expression) statement |
break;

As can be seen, most C statements are supported. Strangely, some are missing (but
hard to add should the need arise).

expression expression, expression... |
expression binop expression |
expression asgnop expression |
unop expression |
++ expression |
-- expression |
expression ++ |
expression -- |
number |
char_const |
string |
name |
name (expression) |
expression [expression] |
(expression)

binop - | + | * | / | > | >= | == | != | <= | < | || | && | << | >> | | | ^ | & | % | ? | : | . | ->

These are the usual C binary operators (with the C precendences) with the addition
“?”, “ : ”, “ . ” and “-> ” operators. These can be treated as binary operators because
makes no use of the semantics of ternary expressions and structure member access
effect that you may notice is that the state notation compiler will warn that structure
are unused variables).

asgnop = | += | -= | &= | |= | /= | *= | %= | <<= | >>= | ^=

These are the usual C assignment operators.

unop + | - | * | & | ! | ~

These are the usual C unary operators.

number
char_const
string
name

The usual C syntax is supported for numbers, character constants, strings and name
that, taken together,

expression, expression...
name (expression)

imply that function calls are permitted (syntactically, the argument list is a comm
separated expression).
34 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
Built-in Functions

tion
ions.
ped C

em
ent,
tem

tion

te.

y is

trol

red
a

d.

e an
le). In
5.6 Built-in Functions

The following special functions are built into the SNL. In most cases the state nota
compiler performs some special interpretation of the parameters to these funct
Therefore, some are either not available through escaped C code or their use in esca
code is subject to special rules.

The termvariable_namerefers to any SNL variable that is assigned to a control syst
variable (or, if it’s an array, variables). When using such a variable as a function argum
the function is automatically given access to the details of the underlying control sys
variable.

Several of these functions are primarily intended to be called only fromwhen clauses or
only from action code. However, unlike in previous versions, it is safe to call any func
both inwhen clauses and in action code.

int function returns should be assumed to be apvStat error code unless otherwise
spacified.

delay int delay(double delay_in_seconds)

The delay function returnsTRUEif the specified time has elapsed since entering the sta
It should be used only within awhen expression.

The -t state option (“state_option_stmt” on page 33) controls whether the dela
measured from when the current state was entered from a different state (-t) or from any
state, including itself (+t , the default)

pvPut int pvPut(variable_name)
int pvPut(variable_name, SYNC)

int pvPut(variable_name, ASYNC)

This function puts (or writes) the value of an SNL variable to the underlying con
system variable. The function returns the status from the PV layer (e.g.pvStatOK for
success).

By default,pvPut does not wait for the put to be complete; completion must be infer
by other means. The optionalSYNCargument causes it to block on completion with
hard-coded timeout of 10s. The optionalASYNCargument allows completion to be
checked via a subsequent call topvPutComplete (typically in awhen clause).

Note that, when using channel access, theSYNCandASYNCarguments result in use of
ca_put_callback ; if neither optional argument is specified,ca_put is called as with
previous versions.

pvPutComplete int pvPutComplete(variable_name)
int pvPutComplete(array_name)
int pvPutComplete(array_name, long any)

int pvPutComplete(array_name, long any, long * pComplete)

This function returnsTRUEif the last put of this control system variable has complete
This call is appropriate only ifpvPut ’s optionalASYNC argument was used.

The first form is appropriate when the SNL variable is a scalar. However, it can also b
array (each of whose elements may be assigned to a different control system variab
this case, the single argument form returnsTRUEif the last puts of all the elements of the
EPICS Release: R3.14 State Notation Language Syntax 35

Chapter 5: State Notation Language Syntax
Built-in Functions

l.

trol

ith a
t

d,
ous

able

er to

r the
eue is

iated
via the

less
array have completed (the missing arguments are implicitly0 andNULL respectively). If
any is TRUE, then the function returnsTRUEif any put has completed since the last cal
If pComplete is non-NULL, it should be along array of the same length as the SNL
variable and its elements will be set toTRUEif and only if the corresponding put has
completed.

pvGet int pvGet(variable_name)
int pvGet(variable_name, SYNC)

int pvGet(variable_name, ASYNC)

This function gets (or reads) the value of an SNL variable from the underlying con
system variable. The function returns the status from the PV layer (e.g.pvStatOK for
success). By default, the state set will block until the read operation is complete w
hard-coded timeout of 10s. The asynchronous (+a) compile option can be used to preven
this, in which case completion can be checked via a subsequent call topvGetComplete
(typically in awhen clause).

The optionalSYNCandASYNCarguments override the compile option.SYNCblocks and
so gives default behavior if+a was not specified;ASYNCdoesn’t block and so gives
default behavior if+a was specified.

pvGetComplete int pvGetComplete(variable_name)

This function returnsTRUEif the last get of this control system variable has complete
i.e. the value in the variable is current. This call is appropriate only if the asynchron
(+a) compile option is specified orpvGet ’s optionalASYNC argument was used.

Unlike pvPutComplete , pvGetComplete doesn’t support arrays.

pvGetQ int pvGetQ(variable_name)
int pvGetQ(array_name)

This function removes the oldest value from a SNL variable’s monitor queue (the vari
should have been associated with a queue and an event flag via thesyncQ statement) and
updates the corresponding SNL variable. Despite its name, this function is really clos
efTestAndClear than it is topvGet . It returnsTRUE if the queue was not empty.

If the SNL variable is an array then the behavior is the same regardless of whethe
array name or an array element name is specified. This is because a single qu
associated with the entire array.

pvFreeQ void pvFreeQ(variable_name)

This function deletes all entries from an SNL variable’s queue and clears the assoc
event flag (the variable should have been associated with a queue and an event flag
syncQ statement).

As with pvGetQ , if the SNL variable is an array then the behavior is the same regard
of whether the array name or an array element name is specified.

pvMonitor int pvMonitor(variable_name)

This function initiates a monitor on the underlying control system variable.
36 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
Built-in Functions

d if
s

(
r

type
be

m

y

User
pvStopMonitor int pvStopMonitor(variable_name)

This function terminates a monitor on the underlying control system variable.

pvFlush void pvFlush()

This function causes the PV layer to flush its input-output buffer. It just might be neede
performing asynchronous operationswithin an action block (note that the buffer is alway
flushed on exit from an action block).

pvCount int pvCount(variable_name)

This function returns the element count associated with the control system variable.

pvStatus pvStat pvStatus(variable_name)

This function returns the current alarm status for the control system variablee.g.
pvStatHIHI ; defined inpvAlarm.h). The status and severity are only valid afte
either apvGet call has completed or a monitor has been delivered.

pvSeverity pvSevr pvSeverity(variable_name)

This function returns the current alarm severity (e.g.pvSevrMAJOR). The notes above
apply

pvTimeStamp TS_STAMP pvTimeStamp(variable_name)

This function returns the time stamp for the lastpvGet or monitor of this variable.The
compiler does recognize type TS_STAMP. Therefore, variable declarations for this
should be in escaped C code. This will generate a compiler warning, which can
ignored.

pvAssign int pvAssign(variable_name, control_system_variable_name)

This function assigns or re-assigned the SNL variablevariable_name to
control_system_variable_name. If control_system_variable_nameis an empty string
thenvariable_name is de-assigned (not associated with any control system variable).

pvAssigned int pvAssigned(variable_name)

This function returnsTRUEif the SNL variable is currently assigned to a control syste
variable.

pvConnected int pvConnected(variable_name)

This function returnsTRUE if the underlying control system variable is currentl
connected.

pvIndex int pvIndex(variable_name)

This function returns the index associated with a control system variable. See “
Functions within the State Program” on page 39.
EPICS Release: R3.14 State Notation Language Syntax 37

Chapter 5: State Notation Language Syntax
C Compatibility Features

state
sage

ned
the

are

e. If
pvChannelCount int pvChannelCount()

This function returns the total number of control system variables associated with the
program (the term “channel” is a carry-over from the days when the only support mes
system was channel access).

pvAssignCount int pvAssignCount()

This function returns the total number of SNL variables in this program that are assig
to underlying control system variables. Note: if all SNL variables are assigned then
following expression isTRUE:

pvAssignCount() == pvChannelCount()

Each element of an SNL array counts as variable for the purposes ofpvAssignCount .

pvConnectCount int pvConnectCount()

This function returns the total number of underlying control system variables that
connected. Note: if all variables are connected then the following expression isTRUE:

pvConnectCount() == pvChannelCount()

efSet void efSet(event_flag_name)

This function sets the event flag and causes the execution of thewhen statements for all
state sets that are pending on this event flag.

efTest int efTest(event_flag_name)

This function returnsTRUE if the event flag was set.

efClear int efClear(event_flag_name)

This function clears the event flag and causes the execution of thewhen statements for all
state sets that are pending on this event flag.

efTestAndClear int efTestAndClear(event_flag_name)

This function clears the event flag and returnsTRUEif the event flag was set. It is intended
for use within awhen clause.

macValueGet char* macValueGet(char * macro_name)

This function returns a pointer to a string that is the value for the specified macro nam
the macro does not exist, it returnsNULL.

5.7 C Compatibility Features

Comments C-style comments may be placed anywhere in the state program.
38 State Notation Language Syntax Document Revision: 1

Chapter 5: State Notation Language Syntax
C Compatibility Features

in the
There

ith a
ctly.

ser-

nst C

d

e is
he

ation
re

ion of
ilt-in

and

en
ause
; see
Escape to C Code Because the SNL does not support the full C language, C code may be escaped
program. The escaped code is not compiled by SNC, but is passed the C compiler.
are two escape methods allowed:

1. Any code between%% and the next newline character is escaped. Example:

%% for (i=0; i < NVAL; i++) {

2. Any code between%{ and}% is escaped. Example:

%{
extern float smooth();
extern LOGICAL accelerator_mode;
}%

If you are using the C pre-processor prior to compiling withsnc , and you wish to defer
interpretation of a preprocessor directive (“#” statement), then you should use the form:

%%#include <ioLib.h>
%%#include <abcLib.h>

Any variable declared in escaped C code and used in SNL code will be flagged w
warning message by the SNC. However, it will be passed on to the C compiler corre

User Functions within
the State Program

The last state set may be followed by C code, usually containing one or more u
supplied functions. For example:

program example { ... }
/* last SNL statement */
%{
LOCAL float smooth (pArray, numElem)
 { ... }
}%

There is little reason to do this, since a state program can of course be linked agai
libraries.

Calling pvGet etc.
from C

The built-in SNL functions such aspvGet cannot be directly used in user-supplie
functions. However, most of the built-in functions have a C language equivalent, which
begin with the prefixseq_(e.g.pvGet becomesseq_pvGet). These C functions must pass
a parameter identifying the calling state program, and if a control system variable nam
required, theindex of that variable must be supplied. This index is obtained via t
pvIndex function. Furthermore, if the code is complied with the+r option, the database
variables must be referenced as a structure element as described in “Variable Modific
for Reentrant Option” on page 40 (this isn’t a problem if individual SNL variables a
passed as parameters to C code, because the compiler will do the work). Examinat
the intermediate C code that the compiler produces will indicate how to use the bu
functions and database variables.

Variable Extent All variables declared in a state program are made static (non-global) in the C file,
thus are not accessible outside the state program module.

Local variables can be escaped and declared withinwhen clauses (this will result in a
“variable used but not declared” warning from the compiler; ignore it). However, wh
using the+r option, the same name cannot be used for SNL and local variables (bec
the compiler is not clever enough to realize that use of the local variable is intended
“Variable Modification for Reentrant Option” on page 40). For example:
EPICS Release: R3.14 State Notation Language Syntax 39

Chapter 5: State Notation Language Syntax
C Compatibility Features

a

ructure

you
when (pvPutComplete(init, TRUE, done)) {
%% long i;

printf("init commands not all done:");
for (i = 0; i < N; i++)

printf(" %ld", done[i]);
printf("\n");

} state active

Variable Modification
for Reentrant Option

If the reentrant option (+r) is specified to SNC then all variables are made part of
structure. Suppose we have the following declarations in the SNL:

int sw1;
float v5;
short wf2[1024];

The C file will contain the following declaration:

struct UserVar {
int sw1;
float v5;
short wf2[1025];

};

The sequencer allocates the structure area at run time and passes a pointer to this st
into the state program. This structure has the following type:

struct UserVar *pVar;

Reference to variablesw1 is made as:

pVar->sw1

This conversion is automatically performed by the SNC for all SNL statements, but
will have to handle escaped C code yourself.
40 State Notation Language Syntax Document Revision: 1

port
Chapter 6: The PV (Process Variable) API

This chapter describes the PV API. It is intended for those who would like to add sup

using
for new message systems. It need not be read by those who want to write sequences

message systems that are already supported.
ils of
r code
itten
all
to be

For

nt of
ith

ically

is a
CA
se

e, but
6.1 Introduction

The PV (Process Variable) API was introduced at version 2.0 in order to hide the deta
the underlying message system from the sequencer code. Previously, the sequence
(i.e. the modules implementing the sequencer run-time support, not the user-wr
sequences) called CA routines directly. Now it calls PV routines, which in turn c
routines of the underlying message system. This allows new message systems
supported without changing sequencer code.

6.2 Rationale

Several EPICS tools support both CA and CDEV. They do so in ad hoc ways.
example,medmuses anMEDM_CDEVmacro and hasmedmCAandmedmCdevmodules,
whereasalh has analCaCdev module that implements the same interface as thealCA
module.

The PV API is an attempt at solving the same problem but in a way that is independe
the tool to which it is being applied. It should be possible to use the PV API (maybe w
some backwards-compatible extensions) withmedm, alh and other CA-based tools.
Having done that, supporting another message system at the PV level automat
supports it for all the tools that use the PV API.

Doesn’t this sound rather like the problem that CDEV is solving? In a way, but PV
pragmatic solution to a specific problem. The PV API is very close in concept to the
API and is designed to plug in to a CA-based tool with minimal disruption. Why not u
the CA API and implement it for other message systems? That could have been don
would have made the PV API dependent on the EPICSdb_access.h definitions
(currently it is dependent only on the EPICS OSI layer).
EPICS Release: R3.14 The PV (Process Variable) API 41

Chapter 6: The PV (Process Variable) API
A tour of the API

t.

s

and

. The

e

, in
In any case, a new API was defined and the sequencer code was converted to use i

6.3 A tour of the API

Overview The public interface is defined in the filepv.h , which defines various types such a
pvStat , pvSevr , pvValue , pvConnFunc andpvEventFunc , then defines abstract
pvSystem , pvVariable andpvCallback classes. Finally it defines a C API.

The file pv.cc implements generic methods (mostly constructors and destructors)
the C API.

Each supported message systemXXXcreates apvXxx.h file that definesxxxSystem
(extendingpvSystem) and xxxVariable (extendingpvVariable) classes, and a
pvXxx.cc file that contains the implementations ofxxxSystem andxxxVariable .

Currently-supported message systems are CA and a Keck-specific one called KTL
CA layer is very thin (pvCa.h is 104 lines andpvCa.cc is 818 lines; both these figures
include comments).

The file pvNew.cc implements anewPvSystem function that takes a system nam
argument (e.g.“ca ”), calls the appropriatexxxSystem constructor, and returns it (as a
pvSystem pointer). It would be good to change it to use dynamically-loaded libraries
which case there would be no direct dependence of thepv library on any of thepvXxx
libraries (c.f. the way CDEV createscdevService objects).

Simple C++ PV
program (comments
and error handling
have been removed)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pv.h"

void event(void *obj, pvType type, int count, pvValue *val,
 void *arg, pvStat stat) {

pvVariable *var = (pvVariable *) obj;
printf("event: %s=%g\n", var->getName(), val->doubleVal[0]);

}

int main(int argc, char *argv[]) {
const char *sysNam = (argc > 1) ? argv[1] : "ca";
const char *varNam = (argc > 2) ? argv[2] : "demo:voltage";

pvSystem *sys = newPvSystem(sysNam);
pvVariable *var = sys->newVariable(varNam);

var->monitorOn(pvTypeDOUBLE, 1, event);
sys->pend(10, TRUE);

delete var;
delete sys;
return 0;

}

42 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

encer.
The equivalent
program using the C
API

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pv.h"

void event(void *var, pvType type, int count, pvValue *val,
 void *arg, pvStat stat) {

printf("event: %s=%g\n", pvVarGetName(var),
 val->doubleVal[0]);

}

int main(int argc, char *argv[]) {
const char *sysNam = (argc > 1) ? argv[1] : "ca";
const char *varNam = (argc > 2) ? argv[2] : "demo:voltage";
void *sys;
void *var;

pvSysCreate(sysNam, 0, &sys);
pvVarCreate(sys, varNam, NULL, NULL, 0, &var);

pvVarMonitorOn(var, pvTypeDOUBLE, 1, event, NULL, NULL);
pvSysPend(sys, 10, TRUE);

pvVarDestroy(var);
pvSysDestroy(sys);
return 0;

}

6.4 The API in More Detail

We will look at the contents ofpv.h (andpvAlarm.h) in more detail and will specify
the constraints that must be met by underlying message systems.

6.4.1 Type definitions pv.h andpvAlarm.h define various types, described in the following sections.

Status typedef enum {
pvStatOK = 0,

 pvStatERROR = -1,
 pvStatDISCONN = -2,

pvStatREAD = 1,
pvStatWRITE = 2,
.
pvStatREAD_ACCESS = 20,

 pvStatWRITE_ACCESS = 21
} pvStat;

The negative codes correspond to the few CA status codes that were used in the sequ
The positive codes correspond to EPICS STAT values.

Severity typedef enum {
EPICS Release: R3.14 The PV (Process Variable) API 43

Chapter 6: The PV (Process Variable) API
The API in More Detail

ypes.
pvSevrOK = 0,
 pvSevrERROR = -1,

pvSevrNONE = 0,
 pvSevrMINOR = 1,
 pvSevrMAJOR = 2,
 pvSevrINVALID = 3
} pvSevr;

These allow easy mapping of EPICS severities.

Data Types typedef enum {
 pvTypeERROR = -1,
 pvTypeCHAR = 0,
 pvTypeSHORT = 1,
 pvTypeLONG = 2,
 pvTypeFLOAT = 3,
 pvTypeDOUBLE = 4,
 pvTypeSTRING = 5,
 pvTypeTIME_CHAR = 6,
 pvTypeTIME_SHORT = 7,
 pvTypeTIME_LONG = 8,
 pvTypeTIME_FLOAT = 9,
 pvTypeTIME_DOUBLE = 10,
 pvTypeTIME_STRING = 11
} pvType;

#define PV_SIMPLE(_type) ((_type) <= pvTypeSTRING)

Only the types required by the sequencer are supported, namely simple and “time” t
The “error” type is used to indicate an error in a routine that returns apvType as its
result.

Data Values typedef char pvChar;
typedef short pvShort;
typedef long pvLong;
typedef float pvFloat;
typedef double pvDouble;
typedef char pvString[256]; /* use sizeof(pvString) */

#define PV_TIME_XXX(_type) \
 typedef struct { \
 pvStat status; \
 pvSevr severity; \
 TS_STAMP stamp; \
 pv##_type value[1]; \
 } pvTime##_type

PV_TIME_XXX(Char);
PV_TIME_XXX(Short);
PV_TIME_XXX(Long);
PV_TIME_XXX(Float);
PV_TIME_XXX(Double);
PV_TIME_XXX(String);

typedef union {
 pvChar charVal[1];
44 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

it
ut one
tral”
DD is

++.

as

at a
 pvShort shortVal[1];
 pvLong longVal[1];
 pvFloat floatVal[1];
 pvDouble doubleVal[1];
 pvString stringVal[1];
 pvTimeChar timeCharVal;
 pvTimeShort timeShortVal;
 pvTimeLong timeLongVal;
 pvTimeFloat timeFloatVal;
 pvTimeDouble timeDoubleVal;
 pvTimeString timeStringVal;
} pvValue;

#define PV_VALPTR(_type,_value) \
((PV_SIMPLE(_type) ? \

(void *) (_value) : \
(void *) (&_value->timeCharVal.value)))

pvValue is equivalent to db_access_val and, like it, is not self-describing
(remember, the idea is that the PV layer is a drop-in replacement for CA).

Obviously, the introduction ofpvValue means that values must be converted between
and the message system’s internal value representation. This is a performance hit b
that was deemed worthwhile given that there is currently no appropriate “neu
(message system independent) value representation. Once the replacement for G
available, it will maybe be used in preference topvValue .

Callbacks typedef void (*pvConnFunc)(void *var, int connected);

typedef void (*pvEventFunc)(void *var, pvType type, int count,
pvValue *value, void *arg, pvStat status);

In both cases, thevar argument is a pointer to thepvVariable that caused the event. It
is passed as avoid* so that the same function signature can be used for both C and C
In C, it would be passed to one of thepvVarXxx routines; in C++ it would be cast to a
pvVariable* .

pvConnFunc is used to notify the application that a control system variable h
connected or disconnected

• connected is 0 for disconnect and 1 for connect

pvEventFunc is used to notify an application that a get or put has completed, or th
monitor has been delivered

• type , count andarg come from the request

• value is of typetype and containscount elements

• it may be NULL on put completion (the application should check)

• it might also be NULL ifstatus indicates failure (the application should
check)

• it is filled with zeroes if the control system variable has fewer thancount
elements

• status comes from the underlying message system

• it is converted to apvStat
EPICS Release: R3.14 The PV (Process Variable) API 45

Chapter 6: The PV (Process Variable) API
The API in More Detail

s. An

ces,
. Also,

nt

te

d to
is not

the
ther

ld use
The

ms. It
Each

e

nt

onal

and
nect.
6.4.2 pvSystem Class pvSystem is an abstract class that must be extended by specific message system
application typically contains a single instance, created bynewPvSystem as described
in “Overview” on page 42. There’s nothing to stop an application having several instan
each corresponding to a different message system, but the sequencer doesn’t do this
there is no way to pend on events from a set ofpvSystem s.

Refer to pv.h for explicit detail. The following sections describe various importa
aspects of the class.

Variable Creation The newVariable method creates a newpvVariable corresponding to the same
message system as the callingpvSystem . It should be used in preference to the concre
xxxVariable constructors since it doesn’t require knowledge ofxxx !

Event Handling The flush and pend methods correspond toca_flush , ca_pend_io and
ca_pend_event (the latter two are combined into a singlepend method with an
optional wait argument;wait=FALSE gives ca_pend_io behavior,i.e. exit when
pending activity is complete, andwait=TRUE gives ca_pend_event behavior,i.e.
wait until timer expires).

Locking The lock andunlock methods take and give a (recursive) mutex that can be use
prevent more than one thread at a time from being within message system code. This
necessary for thread-safe message systems such as CA.

Debugging A debug flag is supported (it’s an optional argument to the constructor and to
newVariable method) and is used to report method entry, arguments and o
information. Debug flags are used consistently throughout the entire PV layer.

Error Reporting A message system-specific status, a severity (pvSevr), a status (pvStat), and an error
message, are maintained in member variables. The concrete implementations shou
the provided accessor functions to maintain up-to-date values for them.
pvVariable class supports the same interface.

6.4.3 pvVariable
Class

pvVariable is an abstract class that must be extended by specific message syste
corresponds to a control system variable accessed via its message system.
pvVariable object is associated with apvSystem object that manages system-wid
issues like locking and event handling.

Refer to pv.h for explicit detail. The following sections describe various importa
aspects of the class.

Creation The constructor specifies the correspondingpvSystem , the variable name (which is
copied), an optional connection function, an optional private pointer, and an opti
debug flag (0 means to inherit it from thepvSystem).

The constructor should initiate connection to the underlying control system variable
should arrange to call the connection function (if supplied) on each connect or discon

Reading Like CDEV, the PV API supports the followingget methods:
46 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
The API in More Detail

for

a

cer

out

for

a

out

ts a

hat

ust
pvStat get(pvType type, int count, pvValue *value);
pvStat getNoBlock(pvType type, int count, pvValue *value);
pvStat getCallback(pvType type, int count, pvEventFunc func,

void *arg = NULL);

• get blocks on completion for a message system specific timeout (currently 5s
CA)

• getNoBlock doesn’t block: the value can be assumed to be valid only if
subsequentpend (with wait=FALSE) returns without error (currently, the CA
implementation of getNoBlock does in fact block; it should really use
ca_get_callback ; note, however, that this is not an issue for the sequen
because it is not used).

• getCallback calls the user-specified function on completion; there is no time

Writing Like CDEV, the PV API supports the following put methods:

pvStat put(pvType type, int count, pvValue *value);
pvStat putNoBlock(pvType type, int count, pvValue *value);
pvStat putCallback(pvType type, int count, pvValue *value,

pvEventFunc func, void *arg = NULL);

• put blocks on completion for a message system specific timeout (currently 5s
CA; note that CA does not callca_put_callback for a blocking put)

• putNoBlock doesn’t block: successful completion can be inferred only if
subsequentpend (with wait=FALSE) returns without error (note that CA does
not callca_put_callback for a non-blocking put)

• putCallback calls the user-specified function on completion; there is no time
(note that CA callsca_put_callback for a put with callback)

Monitoring The PV API supports the following monitor methods:

pvStat monitorOn(pvType type, int count, pvEventFunc func,
void *arg = NULL, pvCallback **pCallback = NULL);

pvStat monitorOff(pvCallback *callback = NULL);

• monitorOn enables monitors; when the underlying message system pos
monitor, the user-supplied function will be called (CA enablesvalue andalarm
monitors)

• monitorOff disables monitors; it should be supplied with the callback value t
was optionally returned bymonitorOn

• some message systems will permit severalmonitorOn calls for a single variable
(CA does); this is optional (the sequencer only ever calls it once per variable)

• all message systems must permit severalpvVariable s to be associated with the
same underlying control system variable and, when a monitor is posted, m
guarantee to propagate it to all the associatedpvVariable s

Miscellaneous pvVariable supports the same debugging and error reporting interfaces aspvSystem .
EPICS Release: R3.14 The PV (Process Variable) API 47

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

the
le of a

encer

stage.

ee

tems.
if
/

the
6.5 Supporting a New Message System

CDEV is an obvious message system to support. This section should provide
necessary information to support it or another message system. It includes an examp
partly functionalfile message system.

Note that file names in this section are assumed to be relative to the top of the sequ
source tree.

6.5.1 Check-list This section gives a check-list. See Section 6.5.2 on page 48 for an example of each

Create New Files For message system XXX, the following files should be created:

• src/pv/pvXxx.h , definitions

• src/pv/pvXxx.cc , implementation

Edit src/pv/pvNew.cc Edit src/pv/pvNew.cc according to existing conventions. Assume that thePVXXX
pre-processor macro is defined if and only if support for XXX is to be compiled in. S
“src/pv/pvNew.cc” on page 50 for an example.

Edit configure/
RELEASE

By convention, theconfigure/RELEASE file defines the variousPVXXX make
macros. See “configure/RELEASE” on page 51 for an example.

Edit src/pv/Makefile By convention, XXX support should be compiled only if thePVXXXmake macro is
defined and set toTRUE. See “pv/src/Makefile” on page 51 for an example.

Edit application
Makefiles

Edit applicationMakefile s to search thepvXxx library and any other libraries that it
references. It is, unfortunately, necessary, to link applications against all message sys
This is becausesrc/pv/pvNew.cc references them all. This problem will disappear
and whenpvNew is changed to loadpvXxx libraries dynamically by name. See “test/pv
Makefile” on page 51 for an example.

6.5.2 Example As an example, we consider a notionalfile message system with the following
attributes:

• Commands are read from filefileI ; they are of the form “keyword value ”,
e.g. “fred 2 ” sets variablefred to 2 (

• Results are written to filefileO ; they are of the same form as the commands

• Everything is a string

The filespvFile.h and pvFile.cc can be found in thesrc/pv directory. They
compile and run but do not implement full functionality (left as an exercise for
reader!).

src/pv/pvFile.h Only some sections of the file are shown.

class fileSystem : public pvSystem {
48 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
Supporting a New Message System
public:
fileSystem(int debug = 0);
~fileSystem();

virtual pvStat pend(double seconds = 0.0, int wait = FALSE);

virtual pvVariable *newVariable(const char *name,
pvConnFunc func = NULL, void *priv = NULL, int debug = 0);

private:
FILE *ifd_;
FILE *ofd_;
fd_set readfds_;

};

class fileVariable : public pvVariable {

public:
 fileVariable(fileSystem *system, const char *name, pvConnFunc

func = NULL, void *priv = NULL, int debug = 0);
 ~fileVariable();

 virtual pvStat get(pvType type, int count, pvValue *value);
 virtual pvStat getNoBlock(pvType type, int count,

pvValue *value);
virtual pvStat getCallback(pvType type, int count, pvEventFunc

func, void *arg = NULL);
 virtual pvStat put(pvType type, int count, pvValue *value);
 virtual pvStat putNoBlock(pvType type, int count, pvValue

*value);
 virtual pvStat putCallback(pvType type, int count, pvValue

*value, pvEventFunc func, void *arg = NULL);
 virtual pvStat monitorOn(pvType type, int count, pvEventFunc

func, void *arg = NULL, pvCallback **pCallback = NULL);
 virtual pvStat monitorOff(pvCallback *callback = NULL);

 virtual int getConnected() const { return TRUE; }
 virtual pvType getType() const { return pvTypeSTRING; }
 virtual int getCount() const { return 1; }

private:
 char *value_; /* current value */
};

src/pv/pvFile.cc Most of the file is omitted.

fileSystem::fileSystem(int debug) :
pvSystem(debug),
ifd_(fopen("iFile", "r")),
ofd_(fopen("oFile", "a"))

{
 if (getDebug() > 0)

printf("%8p: fileSystem::fileSystem(%d)\n", this, debug);

if (ifd_ == NULL || ofd_ == NULL) {
setError(-1, pvSevrERROR, pvStatERROR, “failed to open ”

“iFile or oFile”);
EPICS Release: R3.14 The PV (Process Variable) API 49

Chapter 6: The PV (Process Variable) API
Supporting a New Message System
return;
 }

 // initialize fd_set for select()
FD_ZERO(&readfds_);
FD_SET(fileno(ifd_), &readfds_);

}

pvStat fileVariable::get(pvType type, int count, pvValue *value)
{

if (getDebug() > 0)
printf("%8p: fileVariable::get(%d, %d)\n", this, type,

count);

printf("would read %s\n", getName());
strcpy(value->stringVal[0], "string");
return pvStatOK;

}

pvStat fileVariable::put(pvType type, int count, pvValue *value)
{

if (getDebug() > 0)
printf("%8p: fileVariable::put(%d, %d)\n", this, type,

count);

printf("would write %s\n", getName());
return pvStatOK;

}

src/pv/pvNew.cc Edit this to support thefile message system. Some parts of the file are omitted.

#include "pv.h"

#if defined(PVCA)
#include "pvCa.h"
#endif

#if defined(PVFILE)
#include "pvFile.h"
#endif

pvSystem *newPvSystem(const char *name, int debug) {

#if defined(PVCA)
if (strcmp(name, "ca") == 0)

return new caSystem(debug);
#endif

#if defined(PVFILE)
if (strcmp(name, "file") == 0)

return new fileSystem(debug);
#endif

return NULL;
}

50 The PV (Process Variable) API Document Revision: 1

Chapter 6: The PV (Process Variable) API
Supporting a New Message System

e of

hose
configure/RELEASE Edit this to support thefile message system. Comment out these lines to disable us
message systems. Some parts of the file are omitted.

PVCA = TRUE
PVFILE = TRUE

pv/src/Makefile Edit this to support thefile message system. Some parts of the file are omitted.

LIBRARY += pv
pv_SRCS += pvNew.cc pv.cc

ifeq "$(PVCA)" "TRUE"
USR_CPPFLAGS += -DPVCA
INC += pvCa.h
LIBRARY += pvCa
pv_SRCS_vxWorks += pvCa.cc
pvCa_SRCS_DEFAULT += pvCa.cc
endif

ifeq "$(PVFILE)" "TRUE"
USR_CPPFLAGS += -DPVFILE
INC += pvFile.h
LIBRARY += pvFile
pvFile_SRCS += pvFile.cc
endif

test/pv/Makefile This includes rules for building the test programs of Section 6.3 on page 42. Only t
rules are shown.

TOP = ../..
include $(TOP)/configure/CONFIG

PROD = pvsimpleCC pvsimpleC

PROD_LIBS += seq pv
seq_DIR = $(SUPPORT_LIB)

ifeq "$(PVFILE)" "TRUE"
PROD_LIBS += pvFile
endif

ifeq "$(PVCA)" "TRUE"
PROD_LIBS += pvCa ca
endif

PROD_LIBS += Com

include $(TOP)/configure/RULES
EPICS Release: R3.14 The PV (Process Variable) API 51

Chapter 6: The PV (Process Variable) API
Supporting a New Message System
52 The PV (Process Variable) API Document Revision: 1

Chapter 7: Examples of State Programs
7.1 Entry and exit action example

The following state program illustrates entry and exit actions.

program snctest
float v;
assign v to “grw:xxxExample”; monitor v;

ss ss1 {
state low {

entry {
printf(“Will do this on entry”);

}
entry {

printf(“Another thing to do on entry”);
}
when (v>5.0) {

printf(“now changing to high\n”);
} state high
when (delay(.1)) { } state low
exit {

printf(“Something to do on exit”);
}

}

state high {
when (v<=5.0) {

printf(“changing to low\n”);
} state low
when(delay(.1)) { } state high

}
}

EPICS Release: R3.14 Examples of State Programs 53

Chapter 7: Examples of State Programs
Dynamic assignment example

base

vious

t and
nstrate
er
and
7.2 Dynamic assignment example

The following segment of a state program illustrates dynamic assignment of data
variables to database channels. We have left out error checking for simplicity.

program dynamic
option -c; /* don’t wait for db connections */
string sysName;
assign sysName to “”;

long setpoint[5];
assign setpoint to {}; /* don’t need all five strings */

int i;
char str[30];

ss dyn {
state init {

when () {
sprintf (str, “MySys:%s”, “name”);
pvAssign (sysName, str);
for (i = 0; i < 5; i++) {

sprintf (str, “MySys:SP%d\n”, i);
pvAssign (setpoint[i], str);
pvMonitor (setpoint[i]);

}
} state process

}

state process {
...

}
}

7.3 Complex example

This example needs updating.

The following state program contains most of the concepts presented in the pre
sections. It consists of four state sets: (1)level_det , (2) generate_voltage , (3)
test_status , and (4)periodic_read . The state setlevel_det is similar to the
example in Section 2.3 on page 8. It generates a triangle waveform in one state se
detects the level in another. Other state sets detect and print alarm status and demo
asynchronouspvGet and pvPut operation. The program demonstrates several oth
concepts, including access to run-time parameters with macro substitution
macValueGet , use of arrays, escaped C code, and VxWorks input-output.

Preamble /* File example.st: State program example. */
program example (“unit=ajk, stack=11000”)

/*=================== declarations =========================*/
float ao1;
assign ao1 to “{unit}:ao1”;
monitor ao1;
54 Examples of State Programs Document Revision: 1

Chapter 7: Examples of State Programs
Complex example
float ao2;
assign ao2 to “{unit}:ao1”;

float wf1[2000];
assign wf1 to “{unit}:wf1.FVAL”;

short bi1;
assign bi1 to “{unit}:bi1”;

float delta;
short prev_status;
short ch_status;

evflag ef1;
evflag ef2;

option +r;

int fd; /* file descriptor for logging */
char *pmac; /* used to access program macros */

level_det state set /*=================== State Sets ===========================*/
/* State set level_det detects level > 5v & < 3v */
ss level_det {

state start {
when() {

fd = -1;
/* Use parameter to define logging file */
pmac = macValueGet(“output”);
if (pmac == 0 || pmac[0] == 0)
{

printf(“No macro defined for \"output\”\n");
fd = 1;

}
else
{

fd = open(pmac, (O_CREAT | O_WRONLY), 0664);
if (fd == ERROR)
{

printf(“Can’t open %s\n”, pmac);
exit (-1);

}
}
fdprintf(fd, “Starting state program\n”);

} state init
}

state init {
/* Initialize */
when (pvConnectCount() == pvChannelCount()) {

fdprintf(fd, “All channels connectedly”);
bi1 = FALSE;
ao2 = -1.0;
pvPut(bi1);
pvPut(ao2);
EPICS Release: R3.14 Examples of State Programs 55

Chapter 7: Examples of State Programs
Complex example
efClear(ef2);
efSet(ef1);

} state low

when (delay(5.0)) {
fdprintf(fd, “...waiting\n”);

} state init
}

state low {
when (ao1 > 5.0) {

fdprintf(fd, “High\n”);
bi1 = TRUE;
pvPut(bi1);

} state high

when (pvConnectCount() < pvChannelCount()) {
fdprintf(fd, “Connection lost\n”);
efClear(ef1);
efSet(ef2);

} state init
}

state high {
when (ao1 < 3.0) {

fdprintf(fd, “Low\n”);
bi1 = FALSE;
pvPut(bi1);

} state low

when (pvConnectCount() < pvChannelCount()) {
efSet(ef2);

} state init
}

}

generate_voltage
state set

/* Generate a ramp up/down */
ss generate_voltage {

state init {
when (efTestAndClear(ef1)) {

printf(“start ramp\n”);
fdprintf(fd, “start ramp\n”);
delta = 0.2;

} state ramp
}

state ramp {
when (delay(0.1)) {

if ((delta > 0.0 && ao2 >= 11.0)||
(delta < 0.0 && ao2 <= -11.0))

delta = -delta;
ao2 += delta;
pvPut(ao2);

} state ramp

when (efTestAndClear(ef2)) {
} state init
56 Examples of State Programs Document Revision: 1

Chapter 7: Examples of State Programs
Complex example
}
}

test_status state set /* Check for channel status; print exceptions */
ss test_status {

state init {
when (efTestAndClear(ef1)) {

printf(“start test_status\n”);
fdprintf(fd, “start test_status\n”);
prev_status = pvStatus(ao1);

} state status_check
}

state status_check {
when ((ch_status = pvStatus(ao1)) != prev_status) {

print_status(fd, ao1, ch_status, pvSeverity(ao1));
prev_status = ch_status;

} state status_check
}

}

periodic_read state
set

/* Periodically write/read a waveform channel. This uses
pvGetComplete() to allow asynchronous pvGet(). */

ss periodic_read {
state init {

when (efTestAndClear(ef1)) {
wf1[0] = 2.5;
wf1[1] = -2.5;
pvPut(wf1);

} state read_chan
}

state read_chan {
when (delay(5.)) {

wf1[0] += 2.5;
wf1[1] += -2.5;
pvPut(wf1);
pvGet(wf1);

} state wait_read
}

state wait_read {
when (pvGetComplete(wf1)) {

fdprintf(fd, “periodic read: ”);
print_status(fd, wf1[0], pvStatus(wf1),

pvSeverity(wf1));
} state read_chan

}
}

exit procedure /* Exit procedure - close the log file */
exit {

printf(“close fd=%d\n”, fd);
if ((fd > 0) && (fd != ioGlobalStdGet(1)))

close(fd);
EPICS Release: R3.14 Examples of State Programs 57

Chapter 7: Examples of State Programs
Complex example
fd = -1;
}

C functions /*==================== End of state sets =====================*/

%{
/* This C function prints out the status, severity,

and value for a channel. Note: fd is passed as a
parameter to allow reentrant code to be generated */

print_status(int fd, float value, int status, int severity)
{

char *pstr;

switch (status)
{

case NO_ALARM: pstr = “no alarm”;break;
case HIHI_ALARM: pstr = “high-high alarm”;break;
case HIGH_ALARM: pstr = “high alarm”;break;
case LOLO_ALARM: pstr = “low-low alarm”;break;
case LOW_ALARM: pstr = “low alarm”;break;
case STATE_ALARM: pstr = “state alarm”;break;
case COS_ALARM: pstr = “cos alarm”;break;
case READ_ALARM: pstr = “read alarm”;break;
case WRITE_ALARM: pstr = “write alarm”;break;
default: pstr = “other alarm”;break;

}
fprintf (fd, “Alarm condition: \"%s\"“, pstr);
if (severity == MINOR_ALARM)

pstr = “minor”;
else if (severity == MAJOR_ALARM)

pstr = “major”;
else

pstr = “none”;
fdprintf (fd, “, severity: \"%s\", value=%g\n”, pstr, value);

}
}%
58 Examples of State Programs Document Revision: 1

Chapter 8: Installation

The sequencer is distributed as an EPICS R3.14makeBaseApp application. This chapter

describes how to obtain, unpack, build, install, verify and use the distribution.
e of

ou

you

ime
minor
e first

are
8.1 Prerequisites

EPICS R3.14 (any version) or later must be installed on your system.

8.2 Obtaining the distribution

The distribution should be obtained via the sequencer home page which is, at the tim
writing, at URL http://www2.keck.hawaii.edu:3636/realpublic/
epics/seq (what a mouthful). This describes the available versions and will point y
to a gzipped tar file with a name of the formseq-n.m.p.tar.gz (n.m.p is the
version number,e.g.2.0.0).

Select and download the appropriate version. In what follows, we will assume that
downloaded v2.0.0. However, the instructions will apply to this or any later version.

Note that, from v2.0.0, the third digit is the patch level and will be incremented each t
a new version is released, no matter how minor the changes. The second digit is the
version number and will be incremented each time functional changes are made. Th
digit is the major version number and will be incremented only when major changes
made.
EPICS Release: R3.14 Installation 59

http://www2.keck.hawaii.edu:3636/realpublic/epics/seq
http://www2.keck.hawaii.edu:3636/realpublic/epics/seq

Chapter 8: Installation
Unpacking the distribution

k and
using

e in

ave
8.3 Unpacking the distribution

cd to the directory that you wish to be the parent of the sequencer tree. Then unpac
untar the file. For example (these steps can be combined by clever use of pipes
syntax that I can never remember, or else if you have GNU tar, its-z option will
decompress on the fly).

% gunzip seq-2.0.0.tar.gz
% tar xvf seq-2.0.0.tar

This creates a directory tree with the following general structure (this is part of the fil
the top-level directory).

/sequencer

README This file (general notes at the top, followed
by release notes, most recent first)

(etc... update when README has been updated!)

8.4 Preparing to build

It will be necessary to edit the filesconfigure/RELEASE andconfigure/CONFIG
before building. Here are copies of these files, with the lines that you are likely to h
change highlit:

#RELEASE Location of external products
EPICS_BASE=/home/wlupton/epics/anl/base
TEMPLATE_TOP=$(EPICS_BASE)/templates/makeBaseApp/top
SEQ=/home/wlupton/epics/seq

#CONFIG
include $(TOP)/configure/CONFIG_APP
Add any changes to make rules here

#CROSS_COMPILER_TARGET_ARCHS = vxWorks-68040
CROSS_COMPILER_TARGET_ARCHS =

shareable library version (from CONFIG_BASE)
SHRLIB_VERSION = $(EPICS_VERSION).$(EPICS_REVISION)

sequencer version number (replaces old Version file)
SEQ_VERSION = 2.0.0

override to use snc from SEQ
SNC = $(SEQ)/bin/$(EPICS_HOST_ARCH)/snc

which message systems to support (comment to disable)
PVCA = TRUE
#PVFILE = TRUE
#PVKTL = TRUE

In RELEASE, you should select EPICS base via theEPICS_BASEmacro and the top of
the sequencer tree via theSEQ macro.
60 Installation Document Revision: 1

Chapter 8: Installation
Building and installing

he
s

nly

r

ill

hout
mail

so
s, it

r is
In CONFIG, you should select the target architectures for which to build via t
CROSS_COMPILER_TARGET_ARCHSmacro (a subset of those for which EPICS ha
been built), and the message systems to support via thePVXXX macros.

8.5 Building and installing

Ensure that your environment is configured for building EPICS applications. The o
EPICS requirement is that theEPICS_HOST_ARCHenvironment variable be set
correctly (you can use the$EPICS_BASE/startup/EpicsHostArch script to set
it). However, if you built EPICS with shareable library support, you
LD_LIBRARY_PATHenvironment variable will have to include$EPICS_BASE/lib/
$EPICS_HOST_ARCH, and if you are using gcc with shareable library support, it w
have to include the directory that containslibstdc++.so . These notes are written from
a Solaris standpoint; details may vary slightly under other architectures.

cd to the top of the sequencer tree and run GNU make. The tree should build wit
incident. Please feed back any build problems (and their resolutions!) to me. My e-
address is on the front cover of this manual.

Note that make builds in theconfigure directory, then thesrc tree, and finally the
test tree. A failure in thetest tree will not impact your ability to write sequences.

8.6 Verifying the installation

Under Solaris, the-R loader option will have been used to link executables,
LD_LIBRARY_PATHshould need no further additions. Under other operating system
may be necessary to append$SUPPORT/lib/$EPICS_HOST_ARCH , where
SUPPORT has the value that you gave it inconfigure/RELEASE .

cd to $SUPPORT/bin/$EPICS_HOST_ARCH. It should look like this:

demo sncDelay sncEntryVar sncExample sncOpttVar
demo.vws sncEntry sncExEntry sncExitOptx
snc sncEntryOpte sncExOpt sncOptt

Try running demo. This includes its own CA server, so no IOC or portable CA serve
needed. It should look something like this:

% ./demo
Starting iocInit
##
@(#)EPICS IOC CORE built on Mar 22 2000
@(#)Version R3.14.0.alpha $$Date: 2000/03/16 15:38:06 $$
@(#)Built date Mar 22 2000
##
db_attach_pvAdapter I dont know what to call
iocInit: All initialization complete
@(#)SEQ Version 2.0.0: Fri Mar 31 16:50:09 HST 2000
osiSockDiscoverInterfaces(): ignoring loopback interface: lo0
osiSockDiscoverInterfaces(): net intf hme0 found
osiSockDiscoverInterfaces(): ignoring loopback interface: lo0
osiSockDiscoverInterfaces(): net intf hme0 found
Spawning thread 0xa54c0: "demo_1"
EPICS Release: R3.14 Installation 61

Chapter 8: Installation
Verifying the installation

e

ds are

s and
Spawning thread 0xa5580: "demo_2"
Spawning state program "demo", thread 0x98240: "demo"
demo_1 2000/03/31 17:14:24: start -> ramp_up
demo 2000/03/31 17:14:31: light_off -> light_on
demo_1 2000/03/31 17:14:35: ramp_up -> ramp_down

If you see the “start -> ramp_up ” etc. messages, things are good. If not, som
channels haven’t connected (use the “- ” to command to find out which).

Issue the “i ” command. You should something like this:

i
NAME ID PRI STATE WAIT

 main 2adf8 0 OK
 errlog 323a0 10 OK
 taskwd 32508 10 OK
 cbLow 3cf48 59 OK
 cbMedium 30e10 64 OK
 cbHigh 30ed8 71 OK
 dbCaLink 313f0 50 OK
 CAC process 31570 50 OK
 scanOnce 4c5f0 70 OK
 scan10 4c878 60 OK
 scan5 4c908 61 OK
 scan2 4c9b0 62 OK
 scan1 4ca40 63 OK
 scan0.5 4cad0 64 OK
 scan0.2 4cb60 65 OK
 scan0.1 4cbf0 66 OK
 CAtcp 4cda0 20 OK
 CAudp 4ce30 19 OK
 seqAux 4def0 51 OK
 CAonline 4df80 7 OK
 CAC process 8ee70 50 OK
 demo 9b310 50 OK
 CAC UDP Recv 9c588 10 OK
 CAC UDP Send 9c618 10 OK
 osiTimerQueue 9c6e0 0 OK
 demo_1 9cac0 50 OK
 demo_2 9cb50 50 OK
 CAC TCP Recv 9d070 10 OK
 CAC TCP Send 9d100 10 OK
 CA event b2cd8 19 OK
 CAclient b2d68 10 OK

Finally, go to an xterm and do the following:

% caget ss0
ss0 light
% caget ss1
ss1 ramp

This illustrates the very basic “sequencer device support” in this release. These recor
returning the names of the first two state-sets of the above sequence.

Most (maybe all) of the other test programs do not connect to control system variable
can be run without an IOC. For example:

% sncExitOptx
@(#)SEQ Version 2.0.0: Fri Mar 31 16:50:09 HST 2000
Spawning state program "sncexitoptx", thread 0x30868: "sncexitoptx"
62 Installation Document Revision: 1

Chapter 8: Installation
Using the installation

se that
e files

n

low, delay timeout, incr v and now reenter low
v = 1
Pause on each exit of low, including ’iterations’
low, delay timeout, incr v and now reenter low
v = 2
Pause on each exit of low, including ’iterations’
low, delay timeout, incr v and now reenter low
v = 3
Pause on each exit of low, including ’iterations’
^D

8.7 Using the installation

This section assumes that you are working in amakeBaseApp environment. The more
general information in Section 3.8 on page 22 should help if this is not the case.

You need to edit your ownconfigure/RELEASE and configure/CONFIG files to
reference the correct sequencer version. The necessary changes are similar to tho
were made to build the sequencer (Section 8.4 on page 60). Here are versions of th
with the lines that must be added for the sequencer highlit:

#RELEASE Location of external products
EPICS_BASE=_EPICS_BASE_
TEMPLATE_TOP=_TEMPLATE_TOP_
SEQ=_SEQ_TOP_

#CONFIG
include $(TOP)/configure/CONFIG_APP
Add any changes to make rules here

#CROSS_COMPILER_TARGET_ARCHS = vxWorks-68040

SNC = $(SEQ)/bin/$(EPICS_HOST_ARCH)/snc

You can refer to the variousMakefile s in the test tree to see how to write your ow
sequences. For example, here is theMakefile for the abovesncExitOptx program
(test/validate/Makefile):

TOP = ../..
include $(TOP)/configure/CONFIG

SNCFLAGS = +m

SEQS = sncDelay sncEntry sncEntryOpte sncEntryVar sncExitOptx \
sncOptt sncOpttVar

PROD = $(SEQS)
OBJS_vxWorks = $(SEQS)

PROD_LIBS += seq
seq_DIR = $(SEQ_LIB)

include $(TOP)/test/Makefile.pv

PROD_LIBS += Com

include $(TOP)/configure/RULES
EPICS Release: R3.14 Installation 63

Chapter 8: Installation
Using the installation

d you
ing

n

This Makefile includestest/Makefile.pv but you will probably want to look at
that and bring what you need inline (it handles all the possible message systems an
will likely be using only a single message system). For example, to use CA, the follow
would be fine.

TOP = ../..
include $(TOP)/configure/CONFIG

SNCFLAGS = +m

SEQS = sncDelay sncEntry sncEntryOpte sncEntryVar sncExitOptx \
sncOptt sncOpttVar

PROD = $(SEQS)
OBJS_vxWorks = $(SEQS)

PROD_LIBS += seq pv pvCa ca Com
seq_DIR = $(SEQ_LIB)

include $(TOP)/configure/RULES

The only real requirements here are thatSEQis defined to point to the head of the tree i
which the sequencer has been installed (seeconfigure/RELEASE ; SEQ_LIB is
automatically defined by a make rule inconfigure), and thatSNCis defined like this
(seeconfigure/CONFIG):

SNC = $(SUPPORT)/bin/$(EPICS_HOST_ARCH)/snc
64 Installation Document Revision: 1

Chapter 9: Acronyms/Glossary

This is not yet a terribly useful section.
ge
er-

ro-
9.1 Acronym List

API Application Programming Interface
CA Channel Access
CDEV Control DEVice
EPICS Experimental Physics and Industrial Control System
GDD Generalized Device Descriptor
IOC Input/Output Controller
KTL Keck Task Library
OSI Operating System Independent
PV Process Variable
SNC State Notation Compiler
SNL State Notation Language
STD State Transition Diagram
UML Unified Modeling Language

9.2 Glossary

Channel Access EPICS software that supports network independent
access to IOC databases.

Control DEVice API (originating at Jefferson Lab) that provide messa
system independent means of interacting with an und
lying control system.

Input/Output Controller The VME/VXI based chassis containing a real-time p
cessor, various I/O modules, and VME modules that
provide assess to other I/O buses such as GPIB.
EPICS Release: R3.14 Acronyms/Glossary 65

Chapter 9: Acronyms/Glossary
Glossary
66 Acronyms/Glossary Document Revision: 1

Index
A

arrays. 11
assign. 4, 8, 10, 12

C

C
blocks of C code 39
calling pvGet etc. from C 39
comments 38
escape to C 39
inline C code 39
local variables 39
variable extent 39

C pre-processor 20
CA. 1–3, 19, 22, 35, 38, 41

ca_put . 35
ca_put_callback. 35

channel access, see CA

D

debugging
seqChanShow 3, 6, 26
seqQueueShow 3, 26
seqShow 3, 6, 26
under Unix 26

delay 10, 33, 35
device support 3

E

efClear . 38
efSet . 38
efTest . 38
efTestAndClear. 4, 38
entry handler. 30

one-off 3, 28, 30
per-state 3, 33

errlogPrintf 5, 28
event flags. 13

synchronizing with variables 32
exit handler. 30

one-off 3, 30
per-state 3, 33

F

files
epicsTypes.h 19
errlog.h . 19
iocCoreLibrary 19
libca . 19
libCom . 19
libpv . 19
libpvCa . 19
libseq . 19
osiSem.h . 19
osiThread.h. 19
pv.cc . 42
pv.h 42–43, 46
pvAlarm.h. 19, 37, 43
pvCa.cc. 42
pvCa.h . 42
pvLibrary 19

pvNew.cc .42
seqCom.h .19
seqLibrary19
shareLib.h 19
snc .19
taskwd.h. .19
tsStamp.h .19

functions
delay.10, 33, 35
efClear .38
efSet .38
efTest .38
efTestAndClear4, 38
errlogPrintf.5, 28
iocLogInit 28
macValueGet27, 38
newPvSystem.46
pvAssign .37
pvAssignCount 12, 38
pvAssigned 12, 37
pvChannelCount 12, 38
pvConnectCount 12, 38
pvConnected 16, 37
pvCount16, 37
pvFlush .37
pvFreeQ3, 14, 36
pvGet4, 14–15, 28, 36
pvGetComplete14, 35–36
pvGetQ.3, 14, 32, 36
pvIndex .37
pvMonitor 36
pvPut4, 8, 10–12, 28, 35
pvPutComplete 4, 15, 35
pvSeverity 12, 37
pvStatus12, 37
pvStopMonitor.37
EPICS Release: R3.14.0 Index 67

Index
pvTimeStamp 12, 37
seq. 30
seqLog . 28
seqStop . 30

I

iocLogInit . 28

K

Kozubal, Andy 1
KTL . 42

L

Lupton, William 1

M

macValueGet. 27, 38
monitor . 8
monitors

de-queueing 36
queuing 14, 32

N

name . 30
newPvSystem 46

O

Operating System Independent, see OSI
OSI . 1, 3

P

parameters
debug . 27
logfile 27–28
name . 27, 30
priority . 28
stack . 28

process variable, see PV API
program. 9, 27
PV API . 2–3, 16, 27, 35–37, 41, 45–47
pv.cc . 42
pv.h . 42–43, 46
pvAlarm.h. 37, 43
pvAssign. 37
pvAssignCount 12, 38
pvAssigned 12, 37
pvCa.cc . 42
pvCa.h. 42
pvChannelCount 12, 38
pvConnectCount 12, 38

pvConnected 16, 37
pvCount 16, 37
pvFlush. 37
pvFreeQ 3, 14, 36
pvGet 4, 14–15, 28, 36
pvGetComplete 14, 35–36
pvGetQ. 3, 14, 32, 36
pvIndex . 37
pvMonitor . 36
pvNew.cc . 42
pvPut 4, 8, 10–12, 28, 35
pvPutComplete. 4, 15, 35
pvSeverity 12, 37
pvStatus 12, 37
pvStopMonitor 37
pvTimeStamp. 12, 37

R

running away to the wide blue yonder39

S

seq . 30
seqChanShow. 3, 6, 26
seqLog . 28
seqQueueShow. 3, 26
seqShow 3, 6, 26
seqStop. 4, 26–27, 30
sequencer

device support 3
sequences

creation. 25
deletion. 26
event flags 13

SNC . 19
SNL . 19

compiler options
a 4, 14, 20, 36
c . 16, 20
d . 20
e . 21, 28
l . 21
m 3, 19, 21
r 16, 21, 32, 39–40
w. 21

option placement 21
options in source files. 32
state options

e . 3, 33
t 3, 33, 35
x . 3, 33

structure . 8
syntax . 8

State Notation Compiler, see SNC
State Notation Language, see SNL
state sets . 9
state transition diagram, see STD
statements

assign 4, 8, 10
monitor. 8
program 9, 27

sync .4, 13
syncQ.3–4, 36
when 4, 8, 10, 13–14, 16, 28, 33, 35–

36, 38–39
STD .7
sync .4, 13
synchronization13
syncQ. .3–4, 36

T

types. .11

V

variables
arrays .11
assigning .31
assignment to.12
asynchronous get36
asynchronous put35
de-assignment from12
declaration of30
de-queueing monitors 36
emptying queues36
extent .39
local .39
monitoring31
queuing monitors.14, 32
status of .12
synchronizing with 13
synchronizing with event flags 13, 32
synchronous get36
synchronous put.35
types. .11
undeclared warnings39

VxWorks .3

W

when4, 8, 10, 13–14, 16, 28, 33, 35–36,
38–39

White, Greg .1
68 Index Document Revision: 1

	State Notation Language and Sequencer Users’ Guide
	Table of Contents
	Chapter 1: Introduction
	1.1 Note on Versions
	1.2 Overview
	1.3 Content of this Manual
	1.4 Copyright and Restrictions
	1.5 Notes on This Release
	1.5.1 Portability changes
	Replaced VxWorks dependencies with OSI routines
	Replaced direct channel access calls with new PV API
	Added optional generation of main program

	1.5.2 New Language Features
	Entry handler
	Entry and exit actions
	State options
	Queueable monitors
	Device support
	Local variables
	More functions are safe in action code
	Asynchronous puts
	Synchronous/ asynchronous override on gets and puts
	Sequencer deletion re- written
	efClear can wake up state sets
	More C syntax is supported

	1.5.3 Bugs fixed
	Avoidance of segmentation violations
	Avoidance of race condition which prevented monitors from being enabled

	1.5.4 Miscellaneous

	1.6 Future Plans
	Device support
	Local variables
	pvNew dynamic loading
	Hierarchical states

	1.7 Notes on v1.9 Release
	Number of control system variables
	Array assignments
	Dynamic assignments
	Hex constants
	Time stamp
	Pointers
	seqShow
	seqChanShow
	ANSI prototypes
	Fix for task deletion

	Chapter 2: State Notation Language Concepts
	2.1 The State Transition Diagram
	2.2 Elements of the State Notation Language
	2.3 A Complete State Program
	2.4 Adding a Second State Set
	2.5 Variable Names Using Macros
	2.6 Data Types
	2.7 Arrays of Variables
	2.8 Dynamic Assignment
	2.9 Status of Control System Variables
	2.10 Synchronizing State Sets with Event Flags
	2.11 Queuing Monitors
	2.12 Asynchronous Use of pvGet()
	2.13 Asynchronous Use of pvPut()
	2.14 Connection Management
	2.15 Multiple Instances and Reentrant Object Code
	2.16 Control System Variable Element Count

	Chapter 3: Compiling a State Program
	3.1 Files needed
	3.2 The State Notation Compiler
	3.3 Name of output file
	3.4 Compiler Options
	3.5 Compiler Errors
	3.6 Compiler Warnings
	3.7 Compiling and Linking a State Program under Unix
	3.8 Using makeBaseApp
	Makefile
	Make output

	Chapter 4: Using the Run Time Sequencer
	4.1 VxWorks-specific instructions
	Loading the sequencer
	Loading a State Program
	Executing the State Program
	Examining the State Program
	Stopping the State Program Tasks

	4.2 Unix-specific instructions
	Executing the State Program
	Examining the state program
	Stopping the State Program Tasks

	4.3 Specifying Run-Time Parameters
	VxWorks
	Unix
	Access within program

	4.4 Sequencer Logging
	4.5 What Triggers an Event?

	Chapter 5: State Notation Language Syntax
	5.1 Typographical conventions
	5.2 State Program
	program
	program_name
	parameter_list
	definition
	entry_handler
	state_set
	exit_handler

	5.3 Definitions
	definition
	decl_stmt
	assign_stmt
	monitor_stmt
	sync_stmt
	syncq_stmt
	compiler_option_stmt

	5.4 State Sets
	state_set
	state_set_name
	state_def
	state_name
	state_option_stmt
	entry_action
	event_action
	new_state
	exit_action

	5.5 Statements and Expressions
	statement
	expression
	binop
	asgnop
	unop
	number char_const string name

	5.6 Built-in Functions
	delay
	pvPut
	pvPutComplete
	pvGet
	pvGetComplete
	pvGetQ
	pvFreeQ
	pvMonitor
	pvStopMonitor
	pvFlush
	pvCount
	pvStatus
	pvSeverity
	pvTimeStamp
	pvAssign
	pvAssigned
	pvConnected
	pvIndex
	pvChannelCount
	pvAssignCount
	pvConnectCount
	efSet
	efTest
	efClear
	efTestAndClear
	macValueGet

	5.7 C Compatibility Features
	Comments
	Escape to C Code
	User Functions within the State Program
	Calling pvGet etc. from C
	Variable Extent
	Variable Modification for Reentrant Option

	Chapter 6: The PV (Process Variable) API
	6.1 Introduction
	6.2 Rationale
	6.3 A tour of the API
	Overview
	Simple C++ PV program (comments and error handling have been removed)
	The equivalent program using the C API

	6.4 The API in More Detail
	6.4.1 Type definitions
	Status
	Severity
	Data Types
	Data Values
	Callbacks

	6.4.2 pvSystem Class
	Variable Creation
	Event Handling
	Locking
	Debugging
	Error Reporting

	6.4.3 pvVariable Class
	Creation
	Reading
	Writing
	Monitoring
	Miscellaneous

	6.5 Supporting a New Message System
	6.5.1 Check-list
	Create New Files
	Edit src/pv/pvNew.cc
	Edit configure/ RELEASE
	Edit src/pv/Makefile
	Edit application Makefiles

	6.5.2 Example
	src/pv/pvFile.h
	src/pv/pvFile.cc
	src/pv/pvNew.cc
	configure/RELEASE
	pv/src/Makefile
	test/pv/Makefile

	Chapter 7: Examples of State Programs
	7.1 Entry and exit action example
	7.2 Dynamic assignment example
	7.3 Complex example
	Preamble
	level_det state set
	generate_voltage state set
	test_status state set
	periodic_read state set
	exit procedure
	C functions

	Chapter 8: Installation
	8.1 Prerequisites
	8.2 Obtaining the distribution
	8.3 Unpacking the distribution
	8.4 Preparing to build
	8.5 Building and installing
	8.6 Verifying the installation
	8.7 Using the installation

	Chapter 9: Acronyms/Glossary
	9.1 Acronym List
	9.2 Glossary

	Index

