Record/Device/Driver
mj Support

Shanghai EPICS Seminar
Thursday, 8/31
J.Odagiri

Before Getting Started...

We will not work on any devices...
Lots of things to know even without hardware

Instead, we will work on an example,

checking and modifying some source
codes.
Who can remember all details at once?

Let me get to focus on essential points
Please consult the manual for more details

Overview

Run-time Database

Record Support

Device Support

Driver Support

Hardware (VME)

Comments on
Record Support

v Record Support consists of a set of
routines.

v They can be called from several different
tasks:
CA _CLIENT task
SCAN task
CALLBACK task
Sequencer task
VxWorks shell task ...

Comments on
Device Support

v Interfaces database records to device
drivers or the hardware itself

v Can be divided into two basic classes:

Synchronous — for register based devices
without delays for /0 (CAMAC))

Asynchronous — for devices which can be
accessed via I/O requests that may take large
amount of time to complete (GPIB)

How Synchronous 1/O
Works

Run-time Database

Hardware (VME)

How Asynchronous I/O
g YVOTKS

v The whole process can be divide into two
phases.

v Phase-l

Request message to be sent from IOC to the
remote device is created and sent

v Phase-ll

Response message from the remote device is
returned to the I0C

IOC reads the data in the response message
and put it into the database record

More on Asynchronous |I/O

v Each of phase-l and phase-ll can be
completed in no time.

v After a task completed phase-l, it can go
ahead to process next record.

v The question is... who takes care of
phase-Il.

Another task in the driver support module
should take care of it.

The task can invoke phase-ll by itself, or get
the EPICS callback task to manage phase-il.

More on Asynchronous I/O (
continued)

v The delay time between phase-l and
phase-ll is determined by :

Performance of the remote device

Transfer rate of the field-bus
Not by IOC nor EPICS

v Phase-l is just an initiation of the 1/0.

v Phase-ll is to execute the steps that a
synchronous |/O executes.

Comments on
Driver Support

v Why do we need to have two layers of
modules, Device and Driver?

v Logically, it is not necessary. The manual
says the device support layer was created
later by a historical reason.

v But still, better to have two layers when ...
It is complicated
There is an existing driver outside EPICS

Goals

v Part-l Record/Device support
Role and structure of record/device support
How they work together to get/put values
How to write new record/device support

v Part-ll Driver support
How to access/probe VME space
How to connect interrupts to a handler
Basic framework of asynchronous drivers

Part-|
= Record/Device Support

il
v To make the story more concrete, a
new record type, rompinRecord was
created for this lecture.

v rompinRecord Is basically same with
longinRecord, except for...

Removed many miscellaneous fields
and routines

Instead, many debug prints inserted

v Record support
rompinRecord.c
rompinRecord.dbd

v Device support

devRISoft.c
devRISoftAsyn.c

The Sources Are...

recordtype(rom
iInclude “d
field(VAL,

rompinRecord.dbd

hin) {

hCommon.dbd”

DBF_LONG) {

prompt(“Current value”)
asl(ASLO)

dbCommon.dbd

fleld(NAME,DBF_STRING) {
prompt(“Record Name”)

special(SPC_NOMOD)
size(29)

Some of Special Values

, SPC_NOMOD

The field can not be modified at run-time
except by the record/device support modules.

v SPC_DBADDR

cvt_dbaddr() should be called when code

outside record/device support want to access
the field.

, SPC_MOD

special() should be called when the field is
modified by database access.

rompinRecord.c

v Consists of
Record Support Entry Table(RSET)
Device Support Entry Table(DSET)

Implementations of record support
routines defined in the RSET

And their forward declarations
Internal support routines

Record Support Entry Table

struct rset rompInRSET = {

ong number,
RECSUPFUN report,
RECSUPFUN init,
RECSUPFUN Init_record,
RECSUPFUN process,

RECSUPFUN get_alarm_double };

I Declarations

=1
[* Create RSET — Record Support Entry
Table */

#define report NULL
#define Initialize NULL
static longinit_record();
static long process();

#define get alarm_double NULL

Device Support Entry Table
(In Record Support)

=1
struct rompindset {

ong number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN Init_record;
DEVSUPFUN get ioint_info;
DEVSUPFUN read _rompin;

devRISoft.c

v Software device support to get a value
from another record through:
Channel Access link
Database link
Constant link

v If you get the value from hardware, you
replace this with, say, devRiMyDevice.c,
which is specific to the device.

Device Support Entry Table
m (In Device Support)

ol H
struct {

number;

DEVSUPFUN read_rompin;
} devRiSoft = {
S,

read_rompin,

devRISoftAsyn.c

v Basically, this does the same as
devRiSoft does.

v But this emulates asynchronous
device support modules for slow
message based devices, like GPIB.

v To make the difference clear, the
delay time has been set to 3
seconds.

Getting Back to Record
Support ...

[* Create RSET — Record Support Entry
Table */

#define report NULL
#define Initialize NULL
static longinit_record();
static long process();

#define get alarm_double NULL

process()
Most Important Routine

v Defines and implements the details
of “record processing”

v Called by dbProcess() , the database
access routine, to process the record

v Calls a device support I/O routine, in
many cases

process() Is Responsible
For...

Set record active while it is being
processed

Perform /O (with aid of device
support)

Check for record specific alarm
conditions

Raise database monitors
Request processing of forward links

How process() Performs |/O

static long process(prompin)

rompinRecord *prompin,;

readValue() : Internal
Routine of record Support

static long readValue(prompin)
rompinRecord *prompin;

{

(*pdset->read _rompin)(prompin);

read rompin()
in Device Support

static long read_rompin(prompin)
struct rompinRecord *prompin;

{

dbGetLink(&prompin->inp, ...);

process() Is Responsible
For...

Set record active while it is being
processed

Perform /O (with aid of device
support)

Check for record specific alarm
conditions

Raise database monitors
Request processing of forward links

How process() Raises
Monitors

static long process(prompin)
rompinRecord *prompin;

monitor() : Internal Routine
of record Support

static void monitor(prompin)
rompinRecord *prompin;

{

unsigned short monitor _mask;

If (monitor_mask) {
db_post_events (prompin, ...);

db post _events()
Part of IOC Core

v Create a message to inform the client of
the change, and put it on a queue

v Get CA_EVENT task to send the message

to the client

v Arguments:
The address of the record/field

Monitor mask
v+ DBE_ALARM - change of alarm state
v DBE_LOG - change of archive state
v DBE_VAL - change of value state

CA_CLIENT and CA_EVENT

v CA_CLIENT task invokes dbProcess()

dbProcess() calls process()
v process() calls monitor()

monitor() calls db_post_event()

db_post _event() puts a message on a
queue to inform the client of the

change, and notify CA_EVENT that
something is in the queue.

v CA_EVENT task picks the message out of
the queue and send it back to the client

process() Is Responsible
For...

Set record active while it is being
processed

Perform /O (with aid of device
support)

Check for record specific alarm
conditions

Raise database monitors
Request processing of forward links

How process() processes
AL

static long process (void *precprd)

{

rompinRecord *prompin = ...

Global Record Support
Routines (base/src/db)

v recG
recG
recG
recG
recG
recG
recG
recG

D
0
0
0
0
0
0
0

SetSevr()
GetGraphicDouble()
GetAlarmDouble()
GetControlDouble()
InitConstantLink()

ResetAlarms()
FwdLink()
GetTimeStamp() ...

Things to do First

v “Uncomment out” the relevant lines in
Makefile.Vx

RECTYPES += ../rompinRecord.c
SRC.c += ../rompinRecord.c
SRC.c +=../devRiSoft.c

SRC.c += ../devRIiSoftAsyn.c
LIBOBJS +=rompinRecord.o
LIBOBJS += devRiSoft.o
LIBOBJS += deVvRISoftAsyn.o

Things to do Next

v “Uncomment out” the relevant lines
in shanghailnclude.dbd

evice(rompin, CONSTANT,
evRISoft,”Soft Channel”)
evice(rompin, CONSTANT,
evRISoftAsn,”Soft Asyn”)

C
C
C
O

Making Modules

v Typing “gmake” at src will do it for you.
v The header file, rompinRecord.h , will be

also created based on the definitions
given in the rompinRecord.dbd .

v After making, please check what you’ve
got(the instructors will help you do it).

Testing with I0C

v Modify the startup script, st.cmd2, so

as to load the test database (
rompin.db)

v Start MEDM and open the display file
for the test (rompin.adl)

v Boot the I0C with the modified
startup script (st.cmd2)

v Have a fun for a while...

PACT

static long process(prompin)

unsigned char pact=prompin->pact;

status = readValue(prompin);

If ('pact && prompin->pact) retrun(
0);

IR More on PACT

v PACT == TRUE means the record is active.

v Before dbProcess() calls process() , it
checks if PACT is FALSE (and the record

is not disabled).

v Asynchronous completion routines in
record support modules call process()

without checking PACT.

Part-l |
Driver Support

v How to access/probe VME space

v How to connect interrupts to a
handler

v Other common techniques to
implement device drivers

CPU local address space
and VME spaces

CPU local

sysBusToLocalAdrs()
= A VxWorks(BSP) function

- convert a bus address to a local address

STATUS sysBusTolLocalAdrs(
Int adrsSpace;
char * busAdrs;

char ** pLocalAdrs;

vxMemProbe()
= A VxWorks(BSP) function

=
- probe an address for a bus error

STATUS vxMemProbe(

char * Adrs;
Int mode;
int length;
char * pVal,

iIntConnect()
A VxWorks(BSP) function

- connect a C routine to a hardware interrupt

STATUS intConnect(
VOIDFUNCPTR * vector,
VOIDFUNCPTR routine;

Int paramerter,

sysintEnable()
= A VxWorks(BSP) function

- enable a bus interrupt level

STATIS sysiIntEnable(

Int intLevel;

Binary Semaphores

v SemBCreate()

Crate and initialize a binary
semaphore

v semTake()

If empty, the caller goes to
sleep.

v semGive()

If another task calls this, the
sleeping task wakes up.

Notification of Events

void print_task()
{
while(TRUE)
{
semTake(intSem, ...);
printf(“got the intterrupt ");

}
}
VOIDFUNCPTR int_handler()

{

semGive(intSem);

}

Mutual-exclusion (Mutex)
Semaphores

v Binary semaphores can be used for
mutual-exclusion.

v But, VxWorks offers another type of
semaphores which specialize In
mutex.

Priority inversion safe
Allows the owner to take recursively
Only the owner can give it.

Linked Lists

—

Linked List Library

stinit() [ellinit()]
stAdd() [ellAdd()]
stGet() [ellGet()]
stCount() [ellCount()]
stFirst() [ellFirst()]
stNext() [ellNext()]

stinsert() [ellinsert()]

Mutex for Linked List

void some _task()

{
while(TRUE)

{

semTake(mutexSem, ...);
ellGet(queue);
semGive(mutexSem);

Watchdog Timers

wdCreate()
Crate a watchdog timer

wdStart()

Start a watchdog timer ‘&
wdCancel()

Cancel a currently counting
watchdog

wdDelete()
Delete a watchdog timer

driverAsyn.c

v A sample code which shows you
how to use semaphores and linked
list libraries.

Create and initialize linked lists

Create and initialize semaphores
Spawn a task which manages requests
Has a simplest interrupt handler

I Practices
mll

Check how PACT works... again.

In process() of rompinRecord,
Comment out monitor() and see what happens.

Comment out recGblFwdLink() and make sure
that forward link does not work.

Modify rompinRecord so that MEDM can
make the graphic display nicely.

Modify rompinRecord so that it can raise
alarms.

If you have time left...

v Compile driverAsyn.c and see how it
works.

v When you test it, you are supposed
to work on behalf of the iocCore and

the hardware...

