
Record/Device/Driver
Support

Shanghai EPICS Seminar

Thursday 8/31

J.Odagiri

Before Getting Started…

ν We will not work on any devices…
ν Lots of things to know even without hardware

ν Instead, we will work on an example,
checking and modifying some source
codes.

ν Who can remember all details at once?
ν Let me get to focus on essential points

ν Please consult the manual for more details

Overview

Record Support

Device Support

Driver Support

Run-time Database

Hardware (VME)

Comments on
Record Support

ν Record Support consists of a set of
routines.

ν They can be called from several different
tasks:

ν CA_CLIENT task

ν SCAN task

ν CALLBACK task

ν Sequencer task

ν VxWorks shell task …

Comments on
Device Support

ν Interfaces database records to device
drivers or the hardware itself

ν Can be divided into two basic classes:
ν Synchronous – for register based devices

without delays for I/O (CAMAC)

ν Asynchronous – for devices which can be
accessed via I/O requests that may take large
amount of time to complete (GPIB)

How Synchronous I/O
Works

Record Support

Device Support

Driver Support

Run-time Database

Hardware (VME)

How Asynchronous I/O
Works

ν The whole process can be divide into two
phases.

ν Phase-I
ν Request message to be sent from IOC to the

remote device is created and sent

ν Phase-II
ν Response message from the remote device is

returned to the IOC
ν IOC reads the data in the response message

and put it into the database record

More on Asynchronous I/O

ν Each of phase-I and phase-II can be
completed in no time.

ν After a task completed phase-I, it can go
ahead to process next record.

ν The question is… who takes care of
phase-II.

ν Another task in the driver support module
should take care of it.

ν The task can invoke phase-II by itself, or get
the EPICS callback task to manage phase-II.

More on Asynchronous I/O (
continued)

ν The delay time between phase-I and
phase-II is determined by :

ν Performance of the remote device
ν Transfer rate of the field-bus
ν Not by IOC nor EPICS

ν Phase-I is just an initiation of the I/O.
ν Phase-II is to execute the steps that a

synchronous I/O executes.

Comments on
Driver Support

ν Why do we need to have two layers of
modules, Device and Driver?

ν Logically, it is not necessary. The manual
says the device support layer was created
later by a historical reason.

ν But still, better to have two layers when …
ν It is complicated
ν There is an existing driver outside EPICS
ν …

Goals

ν Part-I Record/Device support
ν Role and structure of record/device support

ν How they work together to get/put values

ν How to write new record/device support

ν Part-II Driver support
ν How to access/probe VME space

ν How to connect interrupts to a handler

ν Basic framework of asynchronous drivers

Part-I
Record/Device Support

ν To make the story more concrete, a
new record type rompinRecord was
created for this lecture.

ν rompinRecord is basically same with
longinRecord, except for…

ν Removed many miscellaneous fields
and routines

ν Instead, many debug prints inserted

The Sources Are…

ν Record support
ν rompinRecord.c

ν rompinRecord.dbd

ν Device support
ν devRiSoft.c

ν devRiSoftAsyn.c

rompinRecord.dbd

recordtype(rompin) {

include “dbCommon.dbd”

field(VAL,DBF_LONG) {

prompt(“Current value”)

asl(ASL0)

pp(TRUE)

}

..….

dbCommon.dbd

field(NAME,DBF_STRING) {

prompt(“Record Name”)

special(SPC_NOMOD)

size(29)

}

Some of Special Values

ν SPC_NOMOD
ν The field can not be modified at run-time

except by the record/device support modules.

ν SPC_DBADDR
ν cvt_dbaddr() should be called when code

outside record/device support want to access
the field.

ν SPC_MOD
ν special() should be called when the field is

modified by database access.

rompinRecord.c

ν Consists of
ν Record Support Entry Table(RSET)

ν Device Support Entry Table(DSET)

ν Implementations of record support
routines defined in the RSET

ν And their forward declarations

ν Internal support routines

Record Support Entry Table

struct rset rompinRSET = {

long number,

RECSUPFUN report,

RECSUPFUN init,

RECSUPFUN init_record,

RECSUPFUN process,

..….

RECSUPFUN get_alarm_double };

Declarations

/* Create RSET – Record Support Entry
Table */

#define report NULL

#define initialize NULL

static long init_record();

static longprocess();

. . .

#define get_alarm_double NULL

Device Support Entry Table
(in Record Support)

struct rompindset {

long number;

DEVSUPFUN dev_report;

DEVSUPFUN init;

DEVSUPFUN init_record;

DEVSUPFUN get_ioint_info;

DEVSUPFUN read_rompin;

};

devRiSoft.c

ν Software device support to get a value
from another record through:

ν Channel Access link

ν Database link

ν Constant link

ν If you get the value from hardware, you
replace this with, say, devRiMyDevice.c,
which is specific to the device.

Device Support Entry Table
(in Device Support)

struct {

long number;

..….

 DEVSUPFUN read_rompin;

} devRiSoft = {

5,

..….

read_rompin,

devRiSoftAsyn.c

ν Basically, this does the same as
devRiSoft does.

ν But this emulates asynchronous
device support modules for slow
message based devices, like GPIB.

ν To make the difference clear, the
delay time has been set to 3
seconds.

Getting Back to Record
Support …

/* Create RSET – Record Support Entry
Table */

#define report NULL

#define initialize NULL

static long init_record();

static longprocess();

. . .

#define get_alarm_double NULL

process()
Most Important Routine

ν Defines and implements the details
of “record processing”

ν Called by dbProcess() , the database
access routine, to process the record

ν Calls a device support I/O routine, in
many cases

process() Is Responsible
For…

ν Set record active while it is being
processed

ν Perform I/O (with aid of device
support)

ν Check for record specific alarm
conditions

ν Raise database monitors
ν Request processing of forward links

How process() Performs I/O

static long process(prompin)

rompinRecord *prompin;

{

..….

status=readValue(prompin);

..….

}

readValue() : Internal
Routine of record Support

static long readValue(prompin)

rompinRecord *prompin;

{

..….

status =

(*pdset->read_rompin)(prompin);

..….

}

read_rompin()
in Device Support

static long read_rompin(prompin)

struct rompinRecord *prompin;

{

..….

status =

dbGetLink(&prompin->inp, …);

..….

}

process() Is Responsible
For…

ν Set record active while it is being
processed

ν Perform I/O (with aid of device
support)

ν Check for record specific alarm
conditions

ν Raise database monitors
ν Request processing of forward links

How process() Raises
Monitors

static long process(prompin)

rompinRecord *prompin;

{

..….

monitor(prompin);

..….

}

monitor() : Internal Routine
of record Support

static void monitor(prompin)

rompinRecord *prompin;

{

unsigned short monitor_mask;

..….

if (monitor_mask) {

db_post_events (prompin, …);

}

db_post_events()
Part of IOC Core

ν Create a message to inform the client of
the change, and put it on a queue

ν Get CA_EVENT task to send the message
to the client

ν Arguments:
ν The address of the record/field
ν Monitor mask

ν DBE_ALARM - change of alarm state
ν DBE_LOG - change of archive state
ν DBE_VAL - change of value state

CA_CLIENT and CA_EVENT

ν CA_CLIENT task invokes dbProcess()
ν dbProcess() calls process()

ν process() calls monitor()
ν monitor() calls db_post_event()

ν db_post_event() puts a message on a
queue to inform the client of the
change, and notify CA_EVENT that
something is in the queue.

ν CA_EVENT task picks the message out of
the queue and send it back to the client

process() Is Responsible
For…

ν Set record active while it is being
processed

ν Perform I/O (with aid of device
support)

ν Check for record specific alarm
conditions

ν Raise database monitors
ν Request processing of forward links

How process() processes
Flink

static long process (void *precprd)

{

rompinRecord *prompin = …

..….

recGblFwdLink (prompin);

..….

}

Global Record Support
Routines (base/src/db)

ν recGblSetSevr()

ν recGblGetGraphicDouble()

ν recGblGetAlarmDouble()

ν recGblGetControlDouble()

ν recGblInitConstantLink()

ν recGblResetAlarms()

ν recGblFwdLink()

ν recGblGetTimeStamp() …

Things to do First

ν “Uncomment out” the relevant lines in
Makefile.Vx

ν RECTYPES += ../rompinRecord.c

ν SRC.c += ../rompinRecord.c

ν SRC.c += ../devRiSoft.c

ν SRC.c += ../devRiSoftAsyn.c

ν LIBOBJS += rompinRecord.o

ν LIBOBJS += devRiSoft.o

ν LIBOBJS += devRiSoftAsyn.o

Things to do Next

ν “Uncomment out” the relevant lines
in shanghaiInclude.dbd

ν device(rompin,CONSTANT,

 devRiSoft,”Soft Channel”)

ν device(rompin,CONSTANT,

 devRiSoftAsn,”Soft Asyn”)

Making Modules

ν Typing “gmake” at src will do it for you.

ν The header file, rompinRecord.h , will be
also created based on the definitions
given in the rompinRecord.dbd .

ν After making, please check what you’ve
got(the instructors will help you do it).

Testing with IOC

ν Modify the startup script, st.cmd2 , so
as to load the test database (
rompin.db)

ν Start MEDM and open the display file
for the test (rompin.adl)

ν Boot the IOC with the modified
startup script (st.cmd2)

ν Have a fun for a while…

PACT

static long process(prompin)

{

..….

unsigned char pact=prompin->pact;

..….

status = readValue(prompin);

if (!pact && prompin->pact) retrun(
0);

More on PACT

ν PACT == TRUE means the record is active.

ν Before dbProcess() calls process() , it
checks if PACT is FALSE (and the record
is not disabled).

ν Asynchronous completion routines in
record support modules call process()
without checking PACT.

Part-I I
Driver Support

ν How to access/probe VME space

ν How to connect interrupts to a
handler

ν Other common techniques to
implement device drivers

CPU local address space
and VME spaces

CPU local VME bus

sysBusToLocalAdrs()
A VxWorks(BSP) function

- convert a bus address to a local address

STATUS sysBusToLocalAdrs(

int adrsSpace;

char * busAdrs;

char ** pLocalAdrs;

)

vxMemProbe()
A VxWorks(BSP) function

- probe an address for a bus error

STATUS vxMemProbe(

char * Adrs;

int mode;

int length;

char * pVal;

)

intConnect()
A VxWorks(BSP) function

- connect a C routine to a hardware interrupt

STATUS intConnect(
VOIDFUNCPTR * vector;
VOIDFUNCPTR routine;
int paramerter;

)

sysIntEnable()
A VxWorks(BSP) function

- enable a bus interrupt level

STATIS sysIntEnable(

int intLevel;

)

Binary Semaphores

ν SemBCreate()
ν Crate and initialize a binary

semaphore

ν semTake()
ν If empty, the caller goes to

sleep.

ν semGive()
ν If another task calls this, the

sleeping task wakes up.

Notification of Events
void print_task()
{

while(TRUE)
{

semTake(intSem, …);
printf(“got the intterrupt ”);

}
}
VOIDFUNCPTR int_handler()
{

semGive(intSem);
}

Mutual-exclusion (Mutex)
Semaphores

ν Binary semaphores can be used for
mutual-exclusion.

ν But, VxWorks offers another type of
semaphores which specialize in
mutex.

ν Priority inversion safe
ν Allows the owner to take recursively
ν Only the owner can give it.

Linked Lists

NULL
NULL

1 2 3

3

Linked List Library

ν lstInit() [ellInit()]

ν lstAdd() [ellAdd()]

ν lstGet() [ellGet()]

ν lstCount() [ellCount()]

ν lstFirst() [ellFirst()]

ν lstNext() [ellNext()]

ν lstInsert() [ellInsert()]

ν …

Mutex for Linked List
void some_task()
{

while(TRUE)
{

…
semTake(mutexSem, …);
ellGet(queue);
semGive(mutexSem);

…
}

Watchdog Timers

ν wdCreate()
ν Crate a watchdog timer

ν wdStart()
ν Start a watchdog timer

ν wdCancel()
ν Cancel a currently counting

watchdog

ν wdDelete()
ν Delete a watchdog timer

driverAsyn.c

ν A sample code which shows you
how to use semaphores and linked
list libraries.

ν Create and initialize linked lists

ν Create and initialize semaphores

ν Spawn a task which manages requests

ν Has a simplest interrupt handler

Practices

ν Check how PACT works… again.

ν In process() of rompinRecord,
ν Comment out monitor() and see what happens.

ν Comment out recGblFwdLink() and make sure
that forward link does not work.

ν Modify rompinRecord so that MEDM can
make the graphic display nicely.

ν Modify rompinRecord so that it can raise
alarms.

If you have time left…

ν Compile driverAsyn.c and see how it
works.

ν When you test it, you are supposed
to work on behalf of the iocCore and
the hardware…

