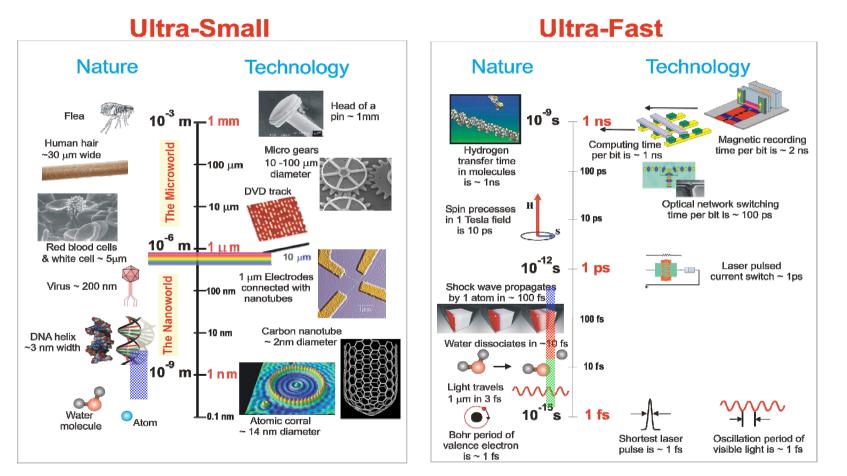


LCLS Control System Status EPICS Collaboration Meeting December 8-10, 2004

Outline

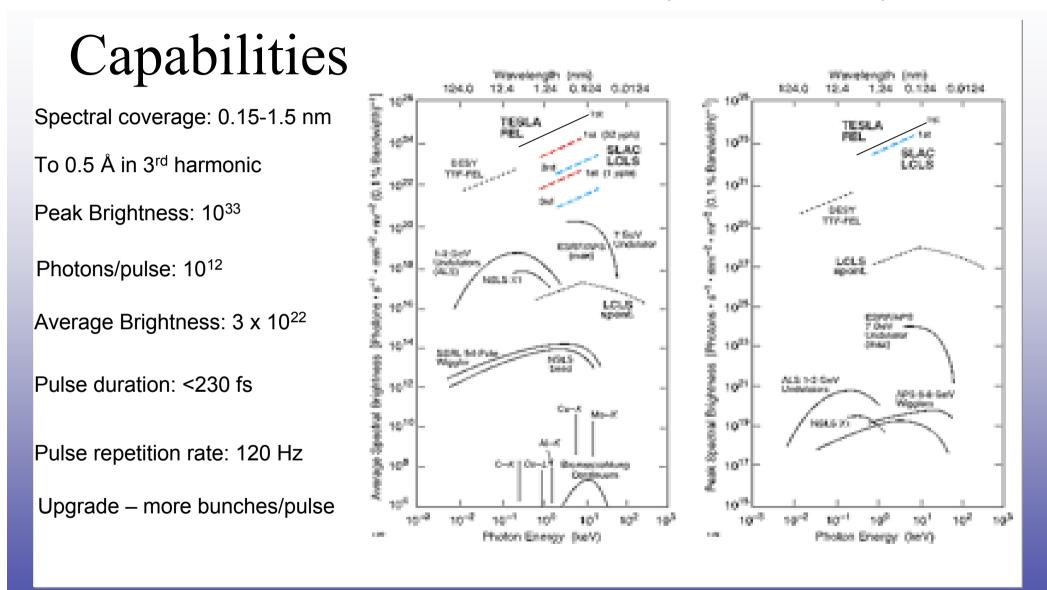

- Project Overview
- Control System Goals
- Resources
- Design Slides for Global Systems
- Tools/ Standards to adopt from the community for LCLS
- Next 6 months
- Conclusions

The World's First Hard X-ray Laser

X-FELs open the Ultra-Small and Ultra-Fast Worlds

December 8-10, 2004 EPICS Collaboration Meeting Tokai

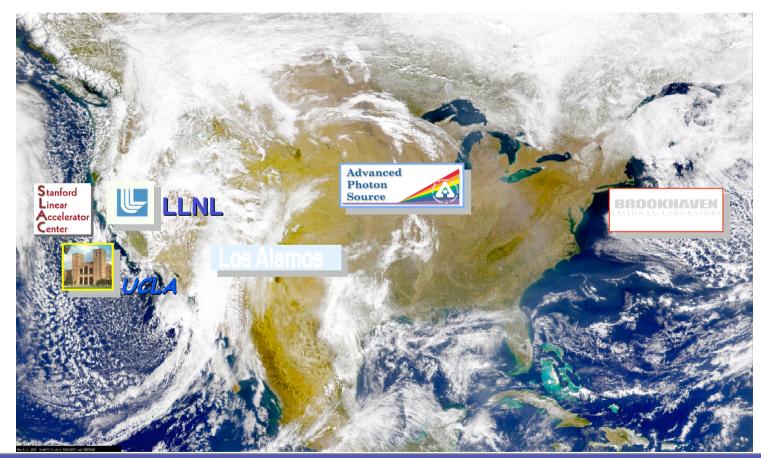
dalesio@slac.stanford.edu


1992: Proposal (Pellegrini), Study Group(Winick) 1994: National Academies Report http://books.nap.edu/books/NI000099/html/index.html 1996: Design Study Group (M. Cornacchia) 107: BESAC (Birgeneau) Report http://www.sc.doe.gov/production/bes/BESAC/reports.html 1998: LCLS Design Study Report SLAC-521 BESAC (Leone) Report http://www.sc.doe.gov/production/bes/BESAC/reports.html 000 LCLS the First Experiments (Shene) SLAC-611. 1 DOE Critical Decision 0 102 LOLS Concernit DOE Critical Decisio **Freunciore** : 2007: First Light 2008: Project Completion

December 8-10, 2004 EPICS Collaboration Meeting Tokai

dalesio@slac.stanford.edu

Bob Dalesio

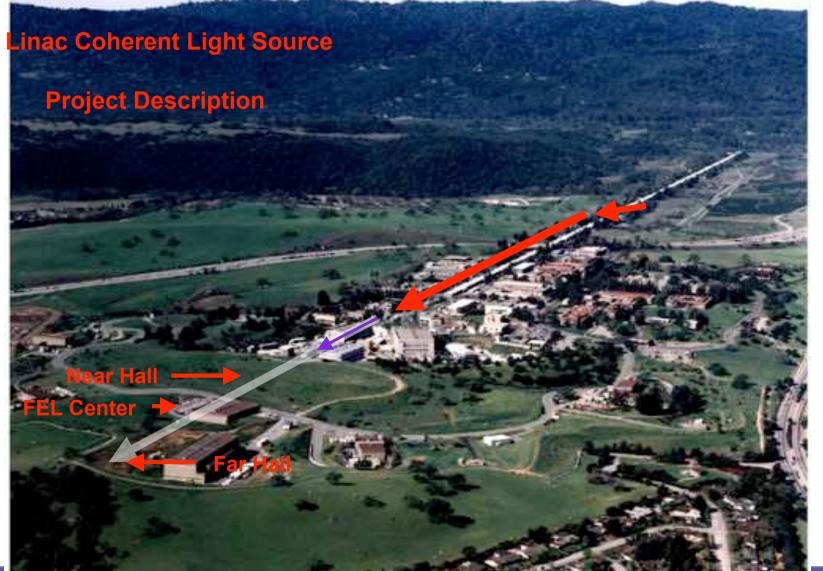

Stanford

Linear Accelerator

Center

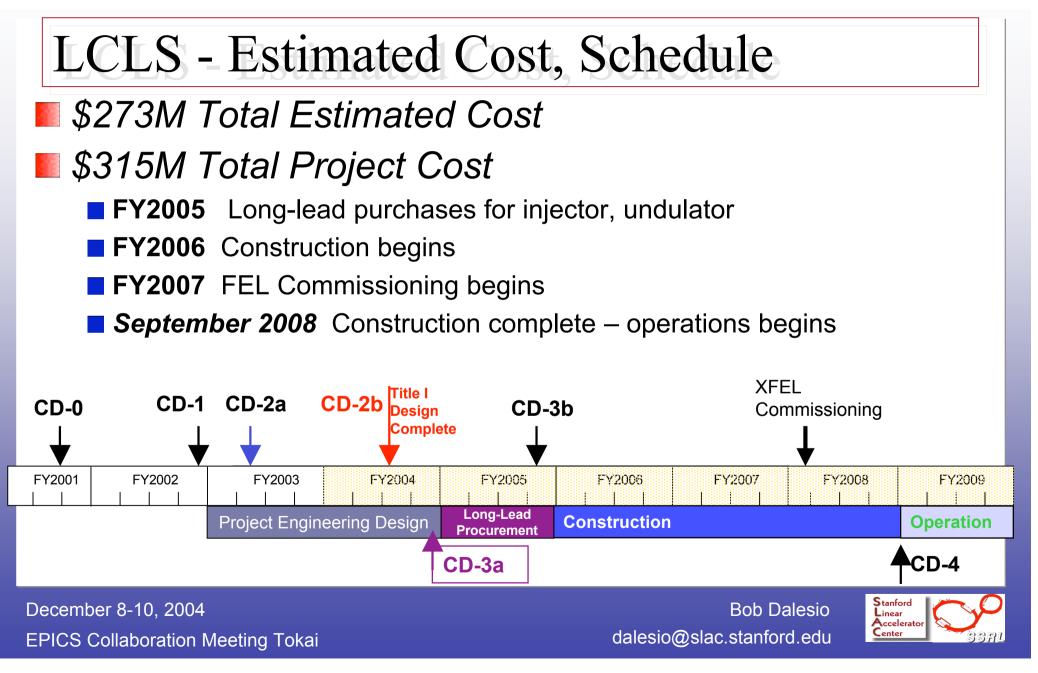
LCLS Construction Collaboration Project Management Responsibilities Delegated to Partner Labs

December 8-10, 2004 EPICS Collaboration Meeting Tokai


dalesio@slac.stanford.edu

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

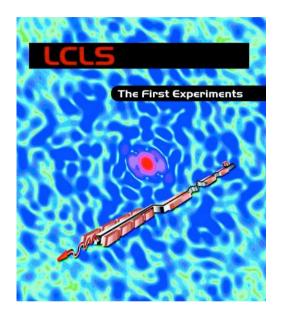


December 8-10, 2004 EPICS Collaboration Meeting Tokai

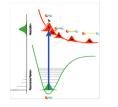
dalesio@slac.stanford.edu

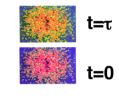
December 8-10, 2004 EPICS Collaboration Meeting Tokai

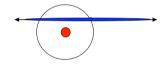
dalesio@slac.stanford.edu

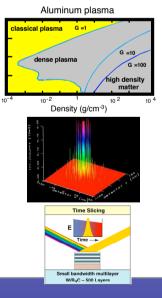


Stanford Linear Accelerator Center


Stanford Synchrotron Radiation Laboratory


•SLAC-PUB-611




Program developed by international team of scientists working with accelerator and laser physics communities

"the beginning.... not the end"

Femtochemistry

Nanoscale Dynamics in Condensed matter

Atomic Physics

Plasma and Warm Dense Matter

Structural Studies on Single **Particles and Biomolecules**

FEL Science/Technology

Bob Dalesio

dalesio@slac.stanford.edu

December 8-10, 2004 **EPICS Collaboration Meeting Tokai**

LCLS Control System Goals

- Provide a fully integrated control system to support the construction, test, installation, integration, operation and automation of the LCLS Accelerator
- Standardize all devices and components across all subsystems.
- Identify all data either by pulse id, beam pulse related time stamp, or 500 msec rough time stamp.
- Full integration with the SLC timing, use of LCLS data in SLC high level applications, and use of SLC data in LCLS

Personnel – Resources FY 2005

	Q1	Q2	Q3	Q4	06 Q1
Ctl. Elec. Engineer	0.75	4.35	735	7.35	7.35
Ctl. Sr. Elec. Tech.		1.11	3.35	3.35	3.35
Ctl. Elec Tech.		0.56	0.56	0.73	1.96
Pwr. Elec. Engineer		1.32	1.32	1.32	1.32
Pwr. Sr. Elec. Tech.		0.35	0.61	0.62	.62
Control Prog.	3.50	7.14	10.63	10.63	10.63
	1	†	1		

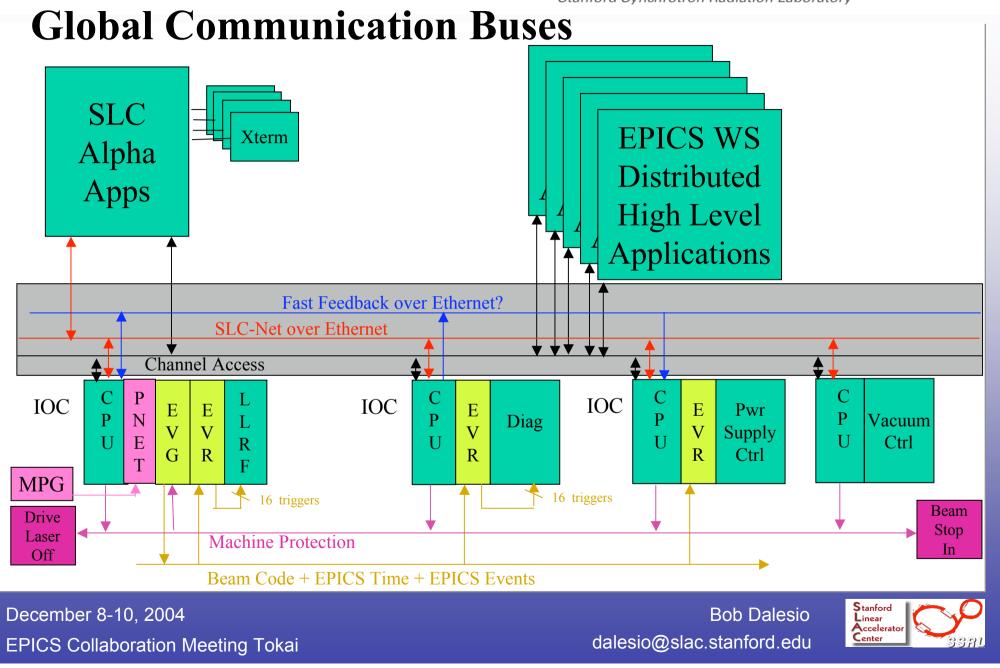
Continuing Resolution: take care of prototyping 1.75 in other WBS

Ramp up Over 6 months to full complement

December 8-10, 2004 **EPICS** Collaboration Meeting Tokai

Bob Dalesio

dalesio@slac.stanford.edu



Integration with the SLC Control System SLC T-Xterm Alpha **EPICS WS** All High Distributed Level CAS High Level CA Gateway Apps Applications SLC Net over Ethernet (Data Transfer) PNet (Pulse ID / User ID) CA over Ethernet MPG (EPICS Protocol) Р Micro Micro E E I/OC I/OC emulator emulator N micro E R 6 Camac I/O Fast Feedback ▼ Timing **RF** reference clock Stanford December 8-10, 2004 **Bob Dalesio** Linear Accelerator dalesio@slac.stanford.edu Center **EPICS Collaboration Meeting Tokai**

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Environment

EPICS Release	3.14.n
R/T OS	RTEMS
Workstation OS	LINUX
EPICS ADE (CVS)	Simple??
Compilers	GNU
Bug Report / Tracking	Artemis
Naming Standard	PEP II
Name Service	Name Server JLAB
Documentation	Web Area
Test stations	FFTB

Client Tools

 $\square \square \square \square$

Display Manager	EDM
Archiver	Channel Archiver
Alarm Handler	ALH
Message Logger	CMLog
Electronic Log Book	DESY, Babar, JLAB?
Stripchart	StripTool
Web based viewing	SPEAR, A-Beans, JoiMint, AIDA??
Image Analysis	Matlab format?
Save / Restore	?
RDB	SNS (leaning)
Gateway	3.14.6 Gateway

High Level Applications

- Matlab
- Python

SLC

Available for Physicists Available for Physicists

- High Level Apps
 - Available in existing system
 - New direction
 - Matlab based Growing group of users
- Top priorities to move into EPICS
 - Which ones make the SLC-aware IOC easier
 - Which are the most useful
 - Which are the easiest to pick off

Hardware Direction – Buy/Steal/Make

- In-House VME version of the PNET
- Commercial BPM Echotek and Libera Electronics
- Community Timing System (Diamond/SLS/APS)
- Community Digital Power Supply Controller (SLS)
- Commercial LLRF Digitizers
 - Commercial Machine Protection System in PLC? 8msec
- Commercial Video evaluate several options (30 Hz)
- Commercial Conventional Facilities through AB PLC
- Community Wire Scanners ??
- Commercial Fast feedback in shared memory?

Next 6 Months

- Complete SLC-aware IOC (30% Complete)
- Complete PNET Prototype (75% Complete)
- Complete BPM Prototype (5% Complete)
- Complete Timing Prototype (5% Complete)
- Complete Power Supply Prototype (30% Complete)
- Complete Video Prototype (10% Complete)
- Design Document for Machine Protection System determine if there is something that we can evaluate
- Integrate Facility Controls, XRay Transport, Experimental Hall into the control system.

Conclusions

- We hope to base all of our hardware on developments from the community or those commercially available.
- Integration with the existing SLC system is a critical step to allow SLAC operators to use the existing tools while we are adopting and modifying replacements.
- We are using standard EPICS tools for core development and engineering interfaces.
- We are adopting all we can from the community and we will use our resources to extend them as we can.

LCLS Software Tasks – Development

- SLC-aware IOC
- Drivers for all new hardware
- Machine Protection / Mitigation
- Master pattern generator
- Fast Feedback Communication
- High Level Applications
 - Correlation Plots
 - Fast Feedback Loops
 - Emittance reconstruction from wire scans and profile monitors
 - Profile monitor image analysis for slice emittance with the transverse cavity
 - Beam Steering and online orbit modeling
 - Beam Steering "scans" to emittance reconstruction from wire scans and profile monitors

LCLS Software Tasks – Standardize/Acquire

- Data Archiving to support all phases of the project
- Operator Display Tools / Synoptic, Plots, Waveform, Image
- Alarm Management
- Electronic Log
- High Level Application Support: Matlab, XAL, Python
- Control System Configuration Tools
- Relational Database Management in all project aspects

LCLS Software Tasks – Control Programmer

- 1 RF Control
- 2 Diagnostics
 - 2.1 Toroids & Faraday Cups
 - 2.2 Beam Stops
 - 2.3 Profile Monitors & Video Devices
 - 2.4 Wire Scanners
 - 2.5 Bunch Length Monitors & E/O Diagnostics
 - 2.6 Beam Position Monitors
 - 2.7 Collimators
 - 2.8 All other stops
- **3** Gun Laser and Drive Control
- 4 Vacuum
- 5 Magnet Power Supply Control IOC and software
- 6 Beam Containment / Personnel Protection / Machine Protection

LCLS Hardware Tasks

I Global

- New timing boards Master Pattern Generator and Event Receiver Boards
- Machine Protection System
- RF Control New LLRF Control
- 2 Diagnostics
 - 2.1 Toroids & Faraday Cups
 - 2.2 Beam Stops
 - 2.3 Profile Monitors & Video Devices
 - 2.4 Wire Scanners
 - 2.5 Bunch Length Monitors & E/O Diagnostics
 - 2.6 Beam Position Monitors
 - 2.7 Collimators
 - 2.8 All other stops
- Gun Laser and Drive Control
- 4 Vacuum Standards
- 5 Magnet Power Supply Controllers
- 6 Beam Containment / Personnel Protection

December 8-10, 2004

EPICS Collaboration Meeting Tokai

dalesio@slac.stanford.edu

