EPICS Collaboration Meeting Dec. 8, 2004

J-PARC Project Status

Hiroshi Yoshikawa.

- 1) Overview of Project
- 2) Construction status
- 3) Accelerators
- 4) Experiments
- 5) Control System

Phase 1 and Phase 2

- Phase 1 + Phase 2 = 1,890 Oku Yen (= \$1.89 billion if \$1 = 100 Yen).
- Phase 1 = 1,513 Oku Yen for 7 years

Construction Schedule

FY2001 FY2002 FY2003 FY2004 FY2005 FY2006 FY2007 FY2008 Bldg. construction Beam Equip. construction Linac test Bldg. construction Beam Equip. construction 3 GeV test Bldg. construction Beam Equip. construction 50 GeV test Bldg. construction Beam Materials + Life Equip. construction test Bldg. construction Beam Equip. construction test Nuclear-Particle Bldg. construction Beam Equip. construction test Neutrino (plan) Construction Others Archelogical studies study report Salt Farms **Construction Start** Beam

Construction Schedule (as of Oct., 2003)

Expected Beam Power

Three Goals at J-PARC

Construction Status

Remains of Ancient Salt Farms

Coins, Potteries, Human Bodies, etc.

Accelerators

Linac

3 GeV Vacuum Pipe and 50 GeV RF Cavity

Vacuum Beam Pipe for 3 GeV

For dipole

For quadrupole

New material (Finemet) 50 kV/m Attained.

RF Cavity for 50 GeV

Dipole Magnet

Quadrupole Magnet

Experiments

Materials and Life Science

Neutrons are scattered by nuclei, in particular, by light-mass nuclei. The configuration of water molecules within a protein can be studied sensitively with neutrons. With high-intensity neutrons, the function of a protein along the DNA chain can be studied.

Nuclear and Particle Physics

Nuclear Particle Experiments

Pion Implantation

ΠΠ

Nuclear Particle Experiments

Strange Meson Implantation

Nuclear shrinkage is also observed for Λ implantation inside the nucleus \leftarrow K. Tanida, et al.

From K2K to T2K

Neutrino physics at J-PARC Tokai-to-Kamioka (T2K) LBL v experiment

10 -4

10 -2

10⁻¹

 $sin^2 2\theta_{13}$

sin²2013

27

R&D Towards Nuclear Transmutation

Nuclear transmutaion is an important issue for nuclear power stations. This project will explore the technical feasibility.

Arrangements to be Made for the Future

Control System

Organization for Construction

Important Characteristics of J-PARC Accelerators

- Extra High Current Proton Accelerator
 - Beam Loss must be minimized to protect radiation damage.
 - One shot Loss of Maximum Beam causes 1hr cooling time.
 - 20 shot Loss corresponds to legal allowance level of radiation.
- Multipurpose of the four experimental facilities
 - Not only Proton beam utilization, but also Neutron beam utilization are required simultaneously.
 - Achievement of high availability is required.

Demands to the Control System

- Rapid detection of the beam loss.
 - MPS
- Prediction of the beam loss.
 - Quick Response of Control System
- Parameter management that reduces the beam loss is requested.
 - Integrated Database
- Dynamic management of the operation privilege is required.
 - Access control

Hardware of Control System

EPICS standard

- Flat network
 - ESRP protocol on dual lines between core switches.
- Distributed IOC
 - VME PPC750, linux PC
- Several kind of IO devices
 - VME boards of analog input/output and digital input/output.
 - Programable Logic Controller (FA-M3)
 - Oscilloscope (TDS3014B, 5034B, 8500B, agilent83542B, DL1640L)
 - Skipback Recorder (cyclic event recorder)
- Timing system
 - High frequency clock and the index code of LUT is distributed.

Hierarchical structure of the protection system

Personnel Protection System (PPS)

- Limiting the space that the beam can exist in, and ensuring the condition.
- When the condition was broken, PPS stops the beam, and cuts off the transport path.
- The purpose of PPS is to prevent the occurrence of human damage.
- The compaction in the return time at the PPS action is not considered fundamentally.
- PPS becomes the basis of the legal permission of this facility, and reliability is most important.
- Machine Protection System (MPS)
 - When something wrong happens with devices, MPS stops the beam.
 - The purpose of MPS is to prevent the damage of copper material by the bombardment of the high power beam.
 - Very fast response is required, and combination with the loss monitors is important.
- Computer Control System
 - Detecting the increase of beam loss, fluctuation of the beam orbit and errors of operation.
 - Prompting the modification of the parameters to avoid MPS action.
 - Correcting the parameters to prevent MPS action.
 - Masking several pulses when pulsed anomalous behaviors are predicted in the linac.

Configuration of MPS

Many MPS units are distributed in the facility, and MPS events are transported to "Stopping the beam" circuit through the independent MPS line.

 \Box

MPS UNIT

MPS unit has two signal lines. One is metal or fiber line for the event transport, and the other is ether-net for parameters and information.

Scheme of DB system

Hardware of control system are prepared.

- Software development and system integration are under going now.
 - Access Control
 - OOP implementation