SuperKEKB main-ring status

Gaku Mitsuka (KEK, Accelerator Laboratory) on behalf of the SuperKEKB commissioning group

B2GM, 8 Feb. 2021

- Target luminosity and operation schedule
- Strategy for 2021a
- Challenges for high-current beam operation
- Readiness for the other major challenges
- Summary

Target luminosity and operation period

• 2021 runs will be dedicated for luminosity production.

- Towards integrated luminosity higher than BaBar's 433 fb⁻¹ (integrated luminosity at the end of 2020c is 90 fb⁻¹.)
- Expected operation period through 2021 runs is ~6.4 months.

Present plan										[Y. Su	etsugi	и, М. То	obiyama]
	2020									2021			
FY2020	4	5	6	7	8	9	10	11	12	1	2	3	
Present plan (20th Oct.)		2020b						2020c				2021a	Total
		~3M						~2M				~1.5M	~6.5M/y
	2021									2022			
FY2021	4	5	6	7	8	9	10	11	12	1	2	3	
Diana (nat finad)		2021b						2021c					Total
[MEXT Road Map]	4/1	~3.1M		7/5			10/7	~2.6M	12/23) excha	nge	~5.7M/y

• 2021a run will start on 16 Feb.

- The first week will be dedicated to vacuum scrubbing at only LER.
- HER operation is supposed to start on 24 Feb, upon how we get the SCC safety certificate on time.

Strategy for 2021 run

First target is to achieve the peak luminosity ~2.4 x 10³⁴ cm⁻²s⁻¹.

- It was realized in 2020b run:
 - $-\beta_y^* = 1 \text{ mm}, \beta_x^* = 80 \text{ mm}(\text{LER})/60 \text{ mm}(\text{HER})$
 - Crab waist 80%(LER)/40%(HER)
 - 978 bunches in total of 700 mA
- Start off 2021a with such a well-understood optics, i.e. same as 2020b
- Important to establish stable beam-injection

Increase beam currents gradually at $\beta_y^* = 1$ mm with 1565 bunches

- Relaxing the TOP BG threshold from 1.2 MHz to 5 MHz allows higher beam currents, i.e. putting a priority on getting luminosity > reducing BGs.
- Accordingly, the LER maximum beam current can be extended to 1.6-1.8 A.

Other options

• Squeeze β_y^* further than 0.8 mm upon positive indication

Challenges

High beam currents

• Transverse-mode-coupling-instability (a.k.a. TMCI), occurred in 2020c, resulted in the rather tight *I*_{bunch} threshold ~0.7 mA/bunch.

Beam size σy^* blowup due to dipole motion (8 Dec. 2020)

- 1) LER beam-beam blowup got tamed by decreasing the HER current.
 - Beam size suddenly blowed up due to dipole motion at ~0.73 mA/bunch.
- 3) BxB FB gain +12 dBm
- The dipole motion was suppressed by increasing BxB FB gain (0.81 mA/bunch). Nevertheless visible beam size
 - (dominantly dipole motion) was still large.
- 5) σ_y^* for single LER back to normal (<0.2 µm)
- [Y. Ohnishi, M. Tobiyama, T. Ishibashi, S. Terui, H. Koiso and many...]
- Most likely TMCI was caused by high-frequency wake fields owing to the carbon-head D06V1 and additional D03V1 collimators.

The D06V1 collimator replacement(s)

2020a	2020b	2020c	2021a
tantalum (→damage)	carbon→TMCI	tantalum (re-used)

- In 2020c we observed no unexpected pressure increase nor heating.
- But, as a counter effect, the carbon-head collimator having large impedance caused the beam instability and resulted in the 0.7 mA/ bunch threshold.
- Replaced the carbon head again in Jan 2021 with the tantalum head (re-used), allowing higher beam current in 2021a

[T. Ishibashi, S. Terui]

D06V1 collimator alignment in Jan 2021

 Align the center of flanges on each side of the D06V1 collimator to lie along a line connecting two Q-magnets

D06V1 collimator alignment in Jan 2021

- Note that these results do not assure the alignment of the collimator head w.r.t. Q-mag.
- Both horizontal and vertical residuals are well below 100 um.

D6V1_U_OUT : Collimator flange's outer position directed to QT3FOP.1 D6V1_U_IN : Collimator flange's inner position directed to QT3FOP.1 D6V1_D_OUT : Collimator flange's outer position directed to QTAFOP.1 D6V1_D_IN : Collimator flange's inner position directed to QTAFOP.1

This is D02V1, NOT D06V1!

[R. Ueki, M. Masuzawa, T. Kawamoto]

Alignment results and residuals from target values (14 Jan. 2021)

Location	Δy [mm]	Average [mm] (IN+OUT)/2	Δz [mm]	Average [mm] (IN+OUT)/2	
D6V1_U_OUT	0.05	0.054	-0.077	0.012	
D6V1_U_IN	0.057	0.054	0.1	0.012	
D6V1_D_OUT	0.044	0.049	0.095	0.021	
D6V1_D_IN 0.051		0.040	-0.053	0.021	

Other collimator work in shutdown

In situ baking of D02V1 and D06V1 collimators (LER)

• Reduction in the base pressure may suppress beam-gas scattering BGs.

Replacement of damaged D09V3 collimator jaws (HER)

• KEKB type titanium jaw (Ti + Cu-coat, 40 mm long), possibly reduces BGs

Replacement of D12V1 collimator drive mechanism (HER)

Allows precise positioning

[K. Shibata]

D09V3 head after removal (19 Jan. 2021)

Challenges

High beam currents (cont'd)

- Beam collimators will be stayed open in 2021 to enlarge the physical aperture and reduce impedance.
- Such a collimator setting will increase BGs and injection-induced beam aborts (Belle aborts and CDC trips), furthermore bring a risk of collimators' damage and QCS quench.

Beam injection (see also linac reports)

- Establish stable and two-bunch injection at 25 Hz repetition rate
- Based on the experience so far, the maximum beam current with 1565 bunches will be ~1.2 A (~0.7 mA/bunch) for 2021a+b. [Y. Funakoshi]

11

β _v *	N _b	TOP Limit (LER,HER)	TMCI(C)	TMCI(Ta)	Expected Luminosity (Carbon)	Expected Luminosity (Ta)	Injection LER 2-bunch (22Hz)	Injection HER 2-bunch (25Hz)
1mm	978	1.13A, 1.05A	0.685A	0.978A	2.1 x 10 ³⁴	3.4 x 10 ³⁴	1.35A	1.14A
1mm	1174	1.16A, 1.08A	0.821A	1.17A	2.6 x 10 ³⁴	4.5 x 10 ³⁴	1.42A	1.25A
1mm	1565	1.22A, 1.13A	1.10A	1.57A	3.4 x 10 ³⁴	4.1 x 10 ³⁴	1.54A	1.44A
1mm	1663	1.23A, 1.14A	1.16A	1.66A	3.6 x 10 ³⁴	4.0 x 10 ³⁴	1.57A	1.49A
1mm	1761	1.24A, 1.15A	1.23A	1.76A	3.8 x 10 ³⁴	3.9 x 10 ³⁴	1.60A	1.52A
0.8mm	978	1.00A, 0.929A	0.685A	0.978A	2.7 x 10 ³⁴	4.7 x 10 ³⁴	0.991A	0.799A
0.8mm	1174	1.06A, 0.984A	0.821A	1.17A	3.2 x 10 ³⁴	4.8 x 10 ³⁴	1.04A	0.875A
0.8mm	1565	1.13A, 1.05A	1.10A	1.57A	4.3 x 10 ³⁴	4.5 x 10 ³⁴	1.13A	1.01A
0.8mm	1663	1.15A, 1.07A	1.16A	1.66A	4.4 x 10 ³⁴	4.4 x 10 ³⁴	1.15A	1.04A
						E 11		

Even with 2-bunch injection, stored currents are below requirements with $\beta_y^*=0.8$ mm.

Upgrade of Bucket Selection

- 2021ab starts with the existing (no modulation) Bucket Selection system.
- Will be switched to the new system once the MR operation goes stable.

Beam abort diagnostics

- Many *injection-related aborts* (H/Linj) especially on Nov at HER, investigation on-going by the injector group.
- Non-injection aborts (H/Lloss) need another preparation, since it has caused QCS quenches and collimator damages. Understanding beam-dust scatterings is ongoing (simulation, LM timing measurements, etc.)
- Injection-veto module will be applied to LM signals near collimators not to stop collimator and/or injection tunings.

RF system

- Completed the replacement of the D11D SCC with a spare cavity in Jan 2021
 - D11D SCC showed the cavity pressure increase on Oct. 2020 and has been detuned through 2020c.
 - No significant effects of the D11D detuning on beam operation
- Once the safety certificate is issued (expected on 22 Feb), HER operation will start on 24 Feb.
- Other systems are overall stable (some upgrades are ongoing/planned.)

Oct. 2020

Optics tuning

- Stable injection and ring operation at high beam currents
- Chromatic X-Y couplings, octupole, etc.
- Rotatable sextuple controllable remotely can be used for lumi. tuning (under development).

Investigation of orbit and beam size fluctuations (1/f ~ 57 s, 200 s...)

Summary

- One of the big issues found in 2020c was a limit of the bunch current due to high impedance of the carbon-head collimator at D06V1.
 - Tantalum-head collimator will be re-used at D06V1 since 2021a.
- Continuous efforts to establish stable injection, and two-bunch at 25 Hz
 - Upgraded bucket selection offers a greater degree of flexibly in injection.
- Beam size and orbit oscillations with 1/f ~57 sec. still remain as homework.
 - Would systematic and comprehensive measurements offer hints?
- All hardware and software are maintained by experts and ready for 2021a.

Why we used C-head collimator at D06V1?

- Unstable beams sometimes directly collided with collimators utilized for BG suppression, e.g. D02V1. Such collisions heavily damaged the collimators.
- D06V1 collimator is expected to guard the collimators for BG suppression from abnormal beams.
- High-z materials is good for a beam-tail shield though, the beam loss is localized followed by high temperature exceeding the melting point.
- During the 2020 summer shutdown, the tantalum-head of the D06V1 collimator used in 2020a+b were replaced with a newly-developed carbon head (low-z).

[T. Ishibashi, S. Terui]

History of Phase 3

Optics Variations

Super KEKB

Comparison of Specific Luminositv

High Bunch Current Study: Specific Luminosity

 $L_{sp} = 6 \text{ x } 10^{31} \text{ at } 0.3 \text{ mA}^2$ ($I_b = 0.55 \text{ mA}, n_b = 393$)

Operation Statistics

(4) Maintenance is usually

Physics Run Machine Tuning

Machine Study

- Troubles
- Maintenance, others

We want to increase machine availability for physics run as mu

maintenance

We gradually develop a resumption strategy and try to reduce r

injection tuning for PF and 2020a/b 2020c 2019c **PF-AR** then SuperKEKB injection 17% 12% 33% 37% tuning 28% 59% starts. Startup with stable 47% 47% operation of linac injector Physics run: 37 % is a key point to resume Physics run: 33 % Physics run: 59 % Machine tuning: 28 % Machine tuning: 57 % or KEKB 5 Linac injector tuning should be as quick as possible. Machine tuning: 47 %

2019c was dedicated to the machine tuning.

as needed. (Wednesday is advant a disturbance for PF and PF-AR is

Group	Device	Content	hour:mi	#
LINAC	safetv	Linac Readv	0:17	1
	charge limit	1S abort	0:57	1
MG	QCS	QC1RP auench	1:17	1
	QEAP 44	PS tracking error	0:59	1
	D11AB KPS	crowbar work. solenoid PS	14:09	1
RF	air fin cooler (AFC)	frozen (human error)	3:16	1
	D11A HOM chiller	compressor abnormal	2:51	2
VAC	D02V1	damage. replace head	174:26	1
Infrastructure	water cooling pump (NIKKO)	malfunction → vacuum leakage at LER	1:28	1
	DR ext. septum	cooling water abnormal	1:43	2
	BL1S 1 2	magnet water stop	0:32	1
DR	DR Ini. kicker	PS fault	2:19	1
	DR ini. kicker	reserver PS communication error	0:37	1
	QRF	magnet water low rate	0:47	1
	BV2P 1 2	magnet water stop	2:18	1
BTn	BH1BP	abnormal water flow rate	0:46	1
ыр	B2P 2	magnet water stop	1:58	3
	QAD9P	PS Tracking I/L	1:19	
BTe	BV2E 4	PS OV	1:16	1

KEKB

DR inj./ext. kicker communication fault: no. incident is 51 (< 15 min for $\frac{1}{26}$ e

Operation Statistics

2020	Physics run	Machine	Machine	Troubles	Maintenance	total (hours)
February	0.0	102.0	0.0	0.0	10.0	112.0
March	344.0	314.5	0.0	17.5	68.0	744.0
April	468.0	135.0	0.0	71.5	45.5	720.0
Мау	525.0	133.5	0.0	26.0	59.5	744.0
June	463.0	153.5	28.0	50.5	25.0	720.0
July	9.0	0.0	0.0	0.0	0.0	9.0
total (hours)	1809.0	838.5	28.0	165.5	208.0	3049.0
October	37.2	536.6	0.0	8.3	45.1	627.2
November	324.7	180.6	0.0	197.2	17.7	630.2
December	283.8	111.0	0.0	6.5	15.8	417.1
total (hours)	645.7	828.2	0.0	212.0	78.6	1764.5

Super KEKB

Comparison between 2020b(June) and 2020c(November)

28