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Abstract

The KEKB accelerator control system including a control computer system, a timing
distribution system, and a safety control system are described. KEKB accelerators
were installed in the same tunnel where the TRISTAN accelerator was. There were
some constraints due to the reused equipment. The control system is based on
EPICS (Experimental Physics and Industrial Control System). In order to reduce
the cost and labor for constructing the KEKB control system, as many CAMAC
modules as possible are used again. The guiding principles of the KEKB control
computer system is as follows: use EPICS as the controls environment, provide a
two-language system for developing application programs, use VMEbus as frontend
computers as a consequence of EPICS, use standard buses, such as CAMAC, GPIB,
VXIbus, ARCNET, RS-232 as fieldbuses and use ergonomic equipment for operators
and scientists. On the software side, interpretive Python and SAD languages are
used for coding application programs. The purpose of the radiation safety system is
to protect personnel from radiation hazards. It consists of an access control system
and a beam interlock system. The access control system protects people from strong
radiation inside the accelerator tunnel due to an intense beam, by controlling access
to the beamline area. On the other hand, the beam interlock system prevents people
from radiation exposure by interlocking the beam operation. For the convenience
of accelerator operation and access control, the region covered by the safety system
is divided into 3 major access control areas: the KEKB area, the PF-AR area, and
the beam-transport (BT) area. The KEKB control system required a new timing
system to match a low longitudinal acceptance due to a low alpha machine. This
timing system is based on a frequency divider/multiply technique and a digital delay
technique. The RF frequency of the KEKB rings and that of the injector Linac are
locked with a common divisor frequency. The common divisor frequency determines
the injection timing. The RF bucket selection system is also described.
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Overview

The KEKB accelerator control system [2,4,5,6,14] consists of:

(1) KEKB accelerator control computer system,
(2) KEKB timing distribution system [9,17],
(3) KEKB safety control system, and
(4) KEKB communication system. The TRISTAN communication system [1] is used as

the KEKB communication system without any significant changes.

The system design started in 1993. Druing the years 1993 and 1994 we have designed
system and evaluated several existing control computer software environments, such as
the EPICS [26,27,28], Vsystem [34] and NODAL [35]. We have concluded that EPICS is a
feasible and cost-effective solution for the KEKB control system. The advisory committee
in the KEKB accelerator department also supported this conclusion. The first portion
of the control computer system, including the server workstation, the network, and 15
VMEbus-based computers, were installed in March, 1997. The full system installation
finished in March, 1998 and the KEKB accelerator commissioning was completed by the
end of that year.

While the KEKB accelerators were being mounted in the tunnel where TRISTAN MR(Main
Ring) was installed, there was a control computer system for TRISTAN distributed in the
local control rooms. We had many CAMAC modules connected to various TRISTAN equip-
ment. In order to reduce the cost and labor for constructing the KEKB control system,
we decided to reuse as many CAMAC modules as possible. For RF and Vacuum moni-
toring and controls, we are now using CAMAC modules after overhauling them. However,
we had changed electrolytic capacitors in the power supplies of CAMAC crates, and also
changed all of the cooling fans mounted in the chases and racks. Some groups, such as the
Beam Monitor, Magnet, and Beam Transport groups, decided to use a completely new
configuration and new equipment for monitoring and controlling their hardware.

The guiding principles of the KEKB control computer system is as follows:

(1) use EPICS as the controls environment,
(2) provide a two-language system for developing application programs,
(3) use VMEbus as frontend computers as a consequence of EPICS,
(4) use standard buses, such as CAMAC, GPIB, VXIbus, ARCNET, RS-232 as fieldbuses,
(5) use ergonomic equipment for operators and scientists.
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On the software side, we adopted interpretive languages, Python[30,31] and SAD[29],
for writing application programs. They are suitable not only for making programs for
operations, but also for accelerator studies. By their nature of interpretive languages, we
can easily obtain higher reliability and flexibilities in modifications, ease of syntax checking,
and short turn-around times.

The whole system was developed by close relationships with link-persons. The link-persons
are interface people in the hardware groups who are responsible for controlling the equip-
ment of their groups. For software design and programming, we have hired 4 to 5 engi-
neers from a company outside of KEK. They are very powerful in designing, coding, and
making documents cncerning the software. Accelerator operations are also performed by
out-sourcing.

1 System Design

1.1 Functional Requirements

The control-system design must be looked at from as many points of view as possible.
Usually, the suppliers of the system and the users tend to have different points of view.
Therefore, we first started to review the functional requirements of the control system for
the KEKB accelerators. The hardware groups that install the accelerator components to
be controlled want to monitor the magnet current values, the voltages of the power sup-
plies and so forth, and if a failure occurs they want it to be reported and recorded as soon
as possible. The operations group wants to record the operations sequence of the acceler-
ators and to have tools to analyze previous operations and to make correlations between
the parameters and the measured values for tuning purposes. Accelerator physicists need
connections between the beam- monitoring, simulation and beam-correction systems.

The principal functional requirements are as follows:

(1) All the data that can be taken should be taken.
(2) All the data taken should be saved for later analysis.
(3) All the operations should be recorded for later inspection.
(4) All the machine parameters and data about the machine components should be saved

in the database.
(5) The control system should be operator-friendly.
(6) The programming system for application programs should be programmer-friendly.
(7) The overall response time to an operator’s request should be less than a few seconds,

ideally one second, unless progress of the process is indicated.
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1.2 Constraints

The KEKB accelerators are reconstructed machines; there were many constraints in con-
structing the control system economically and efficiently. The first of them was CAMAC.
We had already accumulated a large number of CAMAC modules in the TRISTAN control
system, and CAMAC was still thought to be the only well-defined standard for interface
modules that could be used for process input/output. A few new CAMAC modules were
added. On the other hand, it was necessary to replace mini computers more than ten years
old with the latest technology. There was no constraint to introducing a new software en-
vironment, because all of the application programs had to be newly developed.

Because the final commissioning of KEKB was scheduled to take place in 1998, the control
system was installed about one year before that. The basic system for hardware and
software development was installed at the beginning of 1997. It included a workstation,
VME computers and X-terminals as operator consoles. Another constraint was that there
were only a dozen people in the KEKB controls group.

1.3 Basic Design Concepts

Considering the requirements and the constraints stated above, the basic guidelines are to
use:

(1) the so-called Standard Model for the accelerator control system,
(2) international standards for the interfaces between the three layers, to facilitate later

upgrading and maintenance,
(3) international standards such as CAMAC, VME, VXI and GPIB as the interfaces

between the control system and the equipment to be controlled,
(4) products either from international collaborations or that are commercially available,

to minimize the manpower and effort required,
(5) the object-oriented technique or abstraction to hide the hardware from application

programmers,
(6) high-speed networks to connect the computers with each other to get a quick response,
(7) and the link-persons system, as in the construction of the TRISTAN control system,

in which the link-persons make the equipment database and code device drivers for
the application programs because they know the equipment best.

Finally, we decided to use EPICS as the KEKB control system environment, and joined
the EPICS collaboration.
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1.4 System Architecture

The control computer system is divided into three layers – presentation layer, equipment
control layer and device interface layer – as shown in Fig. 1.4. The first two layers are di-
vided functionally, but are connected with each other through an FDDI switched network.
This is because the network traffic between the presentation layer and the equipment con-
trol layer computers is expected to be dominant. There is also a possibility of adopting
a distributed shared-memory network to obtain fast data transfer, and event transmis-
sion among the computers. The presentation layer which is called an Operator Interface
(OPI) in EPICS is composed of several workstations and about 20 X-terminals used as
operator consoles. The main network is an FDDI-switched network that has a node at
each local control building, where an Ethernet segment is extended. The equipment con-
trol layer consists of about 100 VME Input/Output Controllers (IOC) distributed around
the KEKB rings. Each IOC is allocated to a hardware group so as to avoid any conflicts
among groups or users. The final layer, the device interface layer, has standard modules,
such as CAMAC, GPIB and VXI. There is a special interface for controlling the magnet
power supplies.

Device Interface Layer 

Gateway Display

L b t  

CAMAC 

 VME 

CAMAC 

VME 

CAMAC 

CAMAC 
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Equipment Control
Layer 

CAT

FDDI Network Switch  
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Fig. 1. System Configuration

1.4.1 Presentation Layer

OPI, the presentation layer, includes operators consoles, a database manager, a simulation
computer, alarm generation/recording, a data- logging, display and a gateway to the KEK
in-site network. All of the functions are performed by the server workstation. A relational
database management system, ORACLE 7, runs on the server workstation and keeps all
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Table 1
Number of VME Modules in the KEKB control system.

information concerning KEKB, including the machine parameters, equipment specifica-
tions and location. The simulation is performed by the accelerator design workstation for
such purposes as orbit correction. Faults in the equipment are monitored by each IOC
and reported to the server for broadcasting and recording purposes. The data logging pro-
grams collects data from various IOCs for later analyses. Some display output from the
server programs are converted to the standard TV signal format and transmitted over the
KEKB site through the CATV network and other media. Most of the X-terminals are PCs
running X-server emulation software. Macintoshes and Microsoft Windows PCs are used
for this purpose.

1.4.2 Equipment Control Layer

The equipment control layer consists of IOCs that functionally control the equipment
of each hardware group. Each IOC is a VME computer equipped with CAMAC serial
highway drivers and other standard field-bus driver modules. The operating system for
the equipment control computer is VxWorks. 1 Several types of processors on the VME
processor boards are used. MC68040, MC68060, PowerPC603 and PowerPC750 are used
according to the requirements. The software programs for these IOCs were cross-developed
and generated on an EPICS server workstation.

1.4.3 Device Interface Layer

There are several field-buses for the lowest device interface layer. There are CAMAC
crates and CAMAC modules which are re-used from TRISTAN. The CAMAC crates are
connected by CAMAC serial highways. There are also other standard field-bus equipment,
such as GPIB. VXI modules are used for beam-position monitors and fast signal measuring
systems, like beam-feedback systems. There are about 800 BPMs, and the electronics for

1 VxWorks is the name of a real- time operating system and a registered trade mark of Wind
river Systems, Inc.
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them are in 20 sub-control rooms around the ring, where the VXI system is used. More
than 2200 magnet power supplies are installed in eight power-supply rooms around the
ring. These power supplies are controlled through ARCNET, which was specially designed
for them. A Power Supply Interface Controller Module (PSICM) is plugged into each
power supply and exchanges signals and data with the power supply, and the VME IOC.
Schematics of the power supply control configuration are shown in Fig. 1.4.3.

ARCNET
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VME-ARCNET 

VME 

SYNC 

Ethernet 

~100m 

Steering Magnet 
Power Supplies

Power Supply 
Control Module 

Fig. 2. System Configuration of the Steering Magnet Power Supplies control

2 Control Consoles

The operator consoles of the KEKB accelerators will be described in comparison with
the former TRISTAN accelerator control consoles. The construction policy of the KEKB
operators’ console is flexibility. For TRISTAN, there were several sets of identical console
desks made of iron frames in which two touch-panels, two graphic display monitors, and ten
TV monitors were packed. Each set of console was directly controlled by a mini-computer
in the TRISTAN control computer network. On the contrary, in the KEKB control system,
all the man-machine interface devices are based on the X-window system and application
software runs on a UNIX server workstation. Therefore, the number of X-window devices,
such as X-terminals, Macintosh and PC/AT compatible PCs with X-server software, is
limited only by the capacity of the UNIX server and space. Low-cost Network Stations[37]
are introduced as X-terminals with a single screen. A Macintosh or a PC can have up to
four multi-screens, and works as multiple X-terminals with only a set of a mouse and a
keyboard. For space and ergonomic reasons, we adopted TFT flat-panel displays, which
are thin and light in weight; they reduce the reflection of light. For the same reason, a
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cordless keyboard and a mouse were also introduced.

In the EPICS environment, the system is centralized as far as operation is concerned;
X-terminals are used as man-machine interface devices. Application programmers using
MEDM, SAD and Python run on the server workstation in the system, which output
information on the X-terminals.

2.1 Console Design Concepts

In the KEKB control system, consoles are provided as flexibly as possible to reply to any
requests from the KEKB accelerator commissioning team. Only several large tables are
distributed in the central control room, as shown in Fig. 2.1. PC based X-terminals are
placed on large tables (4.0m x 1.6m) and the latest 15-inch and 18.1-inch TFT (Thin-Film
Transistor) LCD (Liquid Crystal Display) monitors and keyboards are placed on them.
Because these LCDs are light in weight and thin, they requires only a little space. Wireless
keyboard and mouse sets are also used partially, which makes the table clean and simple.
Because of the nature of a new accelerator like KEKB, many people want to operate it
and conduct studies during the commissioning period. All of them want to use their own
X-terminals in the CCR. There are more than 30 general-purpose X-terminals, including
Macintoshes and Windows PC running X-terminals.

Fig. 3. Layout of the KEKB control consoles.

2.2 Ergonomic Design

Previous TRISTAN consoles were made of iron-framed racks, and various devices were
mounted in them. In order to keep the operators from any reflected images of the light
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sources on the round surface of the monitors, the lighting in the control room was limited
in both strength and direction. It was so dark and the operator needed to have a lamp
stand when he wrote the logbook. By using flat display monitors, like LCDs, the reflection
problem could be eliminated and we could make the room as bright as in an office room.
The brightness gives us benefits of easiness and comfort when reading and writing.

2.3 Console Equipment

There are many PCs (IBM PC/AT compatibles and Macintoshes) used as X-terminals.
Most of the Macintoshes are equipped with two to four display cards to support multiple
screens. Multiple-video-display controllers can be installed into Windows PCs and one can
use two to four screens. By using multiple-screens, you can display much more information
than single-screen, and are not overlapped, but on separated windows. The most beneficial
merit which we obtain is that the use of multiple-screens decreases the number of necessary
keyboards and mice, thus allowing more space for logbooks, etc. Low-cost X-terminals are
realized by using a Network Station. It is a thin PC, which allows emulation software of
various protocols, such as X-Window and IBM 3270, can be downloaded and operated.
A Network Station has no disk drive or fan, and is completely maintenance free. Various
types of TFT color LCD monitors are used. An 18.1-inch monitor displays an SXGA (1280
x 1024 pixels) screen, and a 15-inch monitor displays an XGA (1024 x 768 pixels) screen.
There are NTSC color TV monitors as used to display the usual TV signals. The latest
LCD monitors have a characteristic of wide viewing angles of more than 120 degrees.

For IBM PC/AT compatibles, we adopted a PCI-bus graphic display controller board. It
can display one to four SXGA screens at one time, and it is possible to have a Windows
screen with 2560 x 2048 pixels with true color. For a Macintosh, conventional PCI graphic
cards can be added to obtain more screens. Because we have many keyboards and mice
along with connecting cables, they are sometimes tangled or tied together. We adopted sets
comprising a wireless keyboard and mouse for IBM PC/AT compatibles. For a Macintosh,
a USB-to-PS/2 converter can be employed to utilize the same keyboard and mouse set. For
the common display use in the central control room, we had been using 27-inch color TV
monitors for years. Some of them were damaged as wll as obsolete. Therefore, we replaced
them by 40-inch plasma display monitors. A plasma display monitor is thin (about 15 cm
thick) and light (about 30 kg) compared to a CRT display of 27 inches (about 60 cm deep
and 50 kg in weight).

3 Computers and Network
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3.1 System Configuration: Client/Server Architecture

IOCs located in the local control rooms collect the raw data. They, as a data server, also
reply to requests mainly from the client programs on the server workstations in the central
control room. Operations and data analyses are performed by these server workstations;
the outputs are displayed on the screens of the X-terminals.

3.2 Network

In the KEKB control computer system, an FDDI switched network is used to connect the
IOCs at local control rooms to the central control room. The distance between the local
control rooms and the server workstations in the central control room is from 50 meters
to 2,050 meters. Multi-mode optical fiber cables are used for connections of less than 2
km, and single-mode ones are used for more than 2 km. In the local control rooms, there
are 100 base TX or 10 base T Ethernet segments. At each local control room, there is a
terminal server for serial ports of the IOCs.

3.3 UNIX Server Workstations

In the KEKB control computer system, there is a UNIX server workstation of PA-RISC
architecture with 4 CPUs. The clock frequency of the server is 100 MHz and the main
memory capacity is 2 GB. The system hard disk has a capacity of 4GB and an external
RAID disk has a 20GB capacity. 2 A server workstation for accelerator simulations is also
used for accelerator operations, communicating with the EPICS server. During the year of
2000, another server workstation was introduced as an extension of the control system to
cover the PF-AR (Photon Factory Advanced Ring) storage ring as shown in Fig. 2. This
server has two 440 MHz PA-8500 processors, 1GB of memory and a 36 GB system disk.
Two server workstations work together to controll KEKB and PF-AR simultaneously.

3.4 VME IOCs

There are about 100 IOCs distributed around the rings in the local control rooms. Each
IOC is equipped with a VME subrack, a plug-in power-supply module, a plug-in cooling
fan unit, a system monitoring module and a VMEbus board computer module. Two CPU
architectures are used in this system, namely the MC68k and Power PC architectures. Old
MC68040 CPU and MC68060 CPU boards are still used and provide sufficient computing

2 Recently, we also added 9GB internal disk.
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power for some applications. New Power PC modules of PPC 603e and PPC 750 are used
for more computing power-consuming applications. The console port of the CPU module is
connected to the terminal server and can be accessed through the KEKB control network.

The IOCs were carefully designed to realise high maintainability. The electric power for
the VME subrack is supplied by a 250 W power supply module which is plugged-in from
the front side. The system monitoring module monitors the power-supply voltages on
the backplane, and sends alarm messages through a dedicated serial communication line
connected to the terminal server. This module can generate a system reset signal on the
backplane for re-booting the IOC in the VME subrack upon a request to the re-boot
command from the serial communication line. This function is very effective and helps
the link-persons to develop and test new software or EPICS database. The fan unit seems
to be the weakest point of the IOC system. This is the only component that has moving
mechanical parts. The rotating speed of the fan is controlled by the temperature of the
air coming out through slots. Further, the fan unit can be removed and exchanged with a
new one from the front side in a few seconds.

4 Filed Buses

The VME computers provide field buses. They are used to obtain more suitable interfaces
to the equipment. In other words, the VME bus is used only for providing field buses. The
VME bus is designed to transfer digital signals between the CPU and peripheral modules,
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and is not suitable for handling high-precision analog signals. We decided to use field buses
for isolation, both functionally and electrically.

The field buses that we have adopted are: a CAMAC serial highway, ARCNET, GPIB,
Modbus Plus, and RS232. We had many CAMAC Modules used for TRISTAN accelerators.
RF acceleration system uses almost all the CAMAC modules used for TRISTAN RF
control system. Some parts of the beam-transport control system and vacuum-control
system also use CAMAC modules. ARCNET is used mainly to control the magnet power
supplies. GPIB is used mainly for magnet current measurements and to control the vacuum
equipment. Modbus Plus is used to monitor the status of the safety control system. MXIbus
is used for interfacing VME IOC with VXI modules.

4.1 CAMAC System

As mentioned above, there are more than two thousand CAMAC modules still being used
mainly for controlling teh RF and vacuum equipment. High-power RF sources, themselves,
are reused and the control system remains with few modifications. Therefore, CAMAC
modules are also reused after overhauling the CAMAC crates and racks. Cooling fans in
the crates and racks were all replaced by new ones. The electrolytic capacitors used in the
power-supply units of the CAMAC creates were all replaced by new ones to prevent future
failures.

A CAMAC serial highway runs within a local building to obtain a simpler configuration
and good response time. The data-transmission rate is 2.5 Mbps in the bit serial mode.

4.2 VXIbus

The beam monitor group developed VXI modules for measuring about 800 beam positions,
and 6 VXI main-frames are used in each of 20 local control rooms. Each position monitor
has 4 electrodes and connected to a 4-input multiplexer VXI module, of which the output
is cascaded to the next stage multiplexer module; a DSP module is used to detect the
beam position.

4.3 ARCNET

ARCNET is used to control the magnet power supplies. The ARCNET controller chip has
a very nice feature, that the chip, itself, manages the network configuration automatically
and dynamically; namely, it detects any errors caused by removing a node or incomplete
communication and modifies the network configuration by sending a reconfiguration packet
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to other nodes. After reconfiguration, the network communication is recovered without the
node that caused an error. Also, if a new node is added to the network, the newcomer
sends a packet, which is detected by other node, which sends a reconfiguration packet to
the members, and the network is configured dynamically. It gives us live-insertion/deletion
of ARCNET nodes.

4.4 GPIB

GPIB is used to connect measuring instruments to the KEKB control system. There are
digital voltmeters used to measure magnet currents. For some remotely located equip-
ments, LAN-GPIB interface controllers are used by connecting to an Ethernet.

4.5 RS-232

Some devices are equipped with RS-232 serial communication line interfaces. For them,
we provide RS-232D interfaces from the VME IOCs. An example is the mass-spectrum
analyzers in the vacuum control sub-system. RS-232 is also used to communicate with
the PLCs. Device/Driver support routines for these PLCs have been developed based on
Ascii/Serial driver/device support routines developed by Jeff Hill and Allan Honey for the
KECK Observatory.

4.6 Modbus Plus

Several kinds of PLC devices are used in the KEKB control system. Among these, the
PLCs which talk the Modbus Plus protocol are used in the magnet protection systems
and the radiation safety system. While these systems are managed by the PLCs locally
and autonomously, the interlock status should be monitored on the console in the central
control room. A set of software has been developed in order to interface these PLCs to
EPICS. It has the standard structure required for the device access layers of EPICS. It
consists of a device support and a driver support. The device support deals with the
processing specific to the Modbus Plus protocol. The driver support[18] interfaces directly
with the hardware and handles physical I/O requests.

5 Software System

The KEKB control system adopted EPICS as a basis of control software. EPICS provides
basic functionality, including periodic scanners, event scanners and the network protocol
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called channel access(CA). It also provides CA client applications, such as an application
to monitor any alarm-status change, an application to record control data into permanent
storage for later analysis and applications to construct operator interface displays.

These EPICS tools, or CA client software, are configurable through specific configuration
files. In many cases in the applications of EPICS, standard EPICS tools can satisfy needs
of the system. However, once the requirements exceed the ability of these tools, we need to
find some way to extend the capability of these tools. These are mostly written in compiler
languages, such as C and/or C++. However it does not prevent us from extending these
tools; the extending process is in general time consuming. In an experimental facility like
an accelerator for high-energy physics, quick application development is required. To solve
this dilemma, we introduced the use of interpretive languages in the KEKB control system.
We discuss the details in 5.4.

5.1 EPICS Environment

The first version of EPICS installed in the computer of the KEKB control group for eval-
uation was EPICS release 3.12.beta11. Currently, the KEKB control system uses EPICS
release 3.13.2 with minor modifications for the KEKB control system ; we plan to change
3.13.5 in the near future. Because EPICS 3.12beta11 just supported the Motorola 68K
family CPU board, we had to port EPICS 3.12beta11 and later versions to a CPU board
based on a PowerPC, which is widely used in the KEKB control system. Most of the code in
EPICS can be used for both 68K CPUs and PPC CPUs without any modification; however,
we have to resolve any problems caused by the architecture and compiler differences[8].
CVS (Concurrent Version System)[39] is used to keep track of any modifications to the
software.

Device drivers for Modbus Plusciteref:Modbus:ICALEPCS99 and ARCNET[19] were writ-
ten to support these field buses in the KEKB control system. CAMAC modules are con-
trolled by using device drivers and device support routines in the EPICS distribution,
except an ADC module in KEKB. This ADC module, designed and used for the TRIS-
TAN accelerator control, uses MSB of 12-bit long data as a sign bit. We therefore needed
to develop a device support routine for this CAMAC module.

5.2 EPICS database

CapFast is used as a graphical tool to design the EPICS database. For a simple database, a
text editor, such as EMACS, is also used. A large part of the EPICS database down loaded
onto IOCs is generated from the dbLoadTemplate command using a template database
designed by CapFast, and parameter files generated from an ORACLE database[see section
5.3].
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Fig. 5. Schematic configuration of the KEKB accelerator Control Computer system

The EPICS runtime database in the KEKB control system has more than two hundred and
seventy thousands records in total. It uses fifty one record types, including fifteen record
types developed for the KEKB control system. AI(Analog Input) and AO ( Analog Output)
records are dominant record types, which occupy about half of the records population.
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5.3 Relational Database

We are using relational databases to manage the data used in the accelerator control sys-
tem, such as hardware addresses. The KEKB database is used to generate the configuration
files for the EPICS runtime database. The logical design of the KEKB database is based
on Entity-Relation(ER) diagrams. We use ORACLE as a relational database manager. An
ER diagram is converted to an ORACLE database using a commercial tool. The device
information database for the KEKB accelerator control system is created by this method.

5.3.1 Automatic Generation of EPICS Files

The KEKB database system automatically generates several types of configuration files
used in EPICS system, as listed below:

(1) EPICS Database
(2) MEDM File (*.adl)

An EPICS database is a file to be downloaded into each IOC (IOC: Input /Output Con-
troller, a VME computer), which contains the configuration of the runtime database on
the IOC. MEDM (Motif based display manager) is one of the client tools of the EPICS
system, which displays operation panels, menus and other objects on a display window.
The configuration file of MEDM is named ”*.adl” Each configuration file type has its own
generator in the KEKB database. These generators are written in SQL*PLUS language.

5.3.2 EPICS Database generation

We expect over 100,000 EPICS records in the KEKB control system. It is not feasible to
fill out every field of these records by hand. Some automation is necessary. We describe
EPICS template records using CAD software ”Capfast” (Fig. 6 ). Template files may
include EPICS macro names. When this template database is downloaded onto IOC, a
macro name is substituted by an actual value. The KEKB database provides a pair of the
EPICS macro name and the EPICS macro value. “dbLoadTemplate” (EPICS tool) is used
for downloading a database.

5.3.3 MEDM Files generation

To generate MEDM files, we use EPICS parameter files as intermediate files. We make
MEDM template files, which include EPICS macros, using MEDM as a graphical panel
editor. Finally, we generate a configuration file for control windows by some tools described
in UNIX shell script or ”awk” language.
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Fig. 6. An example EPICS database as CAPFAST schematic

5.4 Interpretive Languages

5.4.1 Two-Languages System

In the control system for a high-energy accelerator, like KEKB, quick application de-
velopment/modification is required. A short turn-around time is especially important
during commissioning of an accelerator. MEDM and/or EDD/DM (EPICS Display Edi-
tor/Display Manager) are useful development tools for such a purpose. A user of MEDM
can build a graphical user interface screen without any conventional programming. How-
ever, some high-level applications may not fit in this framework. In the KEKB control
system, we have achieved this goal by introducing interpretive programming languages,
Python and SAD, into the control system. SAD is a language originally developed at KEK
for accelerator lattice design. The other, Python, is a general-purpose language system
distributed as public-domain software. These languages are used not only for prototyping
applications, but also for developing application software used in daily operation. These
languages are easier to learn and safer to use compared to compiled languages, such as
C or C++. The interface to the appropriate widget library from these interpretive lan-
guages, such as Tk/gtk+ widget, greatly reduces the effort needed to develop graphical
user interfaces. Modular and object oriented features in the languages allow an incremental
development of application software. This method benefits the reliability and maintain-
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ability of the software.

The TRISTAN control system uses NODAL[35] and PCL(Process Control Language)[36]
for software development. NODAL is an interpretive language with Basic-like syntax and
features specific to a distributed control system. PCL is a compiled language with Fortran–
like syntax and extensions for a real-time system. PCL is used mainly to develop data
modules in Nodal to access hardware. Most of the user interfaces and applications in the
TRISTAN control system were written in NODAL mainly by accelerator physicists. This
kind of “two– language” system is widely seen in successful computer systems[38]. Unix,
for example, has shell scripting languages and C. Elisp and C in the EMACS is another
good example. This observation suggests that a successful user extendable system has (at
least) two programming languages, an interpretive language and a compiled language.

In a two–language system, a compiled language is used to extend the capability of the
interpreted language. This extension is modular so that users can add or delete this ex-
tension at anytime. The interpreted languages are used as glue to combine these modules.
This approach is also useful to avoid a fat application which includes everything (Fat
software). Modular design of software also makes development/test/maintenance easier.

Another advantage of a ”two-language” system is the participation of users. An inter-
preted language usually has simpler syntax and is easy to learn and use for people, in-
cluding NON-professional programmers. In KEKB, application programs which require
knowledge of accelerator physics are written by accelerator physicists. In this case, there
is a large overlap in users of an application and its developer. This reduces overhead of
communication between the user and the developer. They use mostly SAD[29] language
because they use it for their research anyway. Python is used to develop an application
where an accelerator model is not required. Hardware engineers and accelerator operators
can develop there own applications to simplify their own daily tasks. The clean and simple
syntax of Python makes learning it easier. Although there are several textbooks on Python
in English, only a couple of these[30] are available in Japanese. These textbooks and a
Python tutorial translated into Japanese, which is available on WWW[32], were used at
KEKB. Self-training with these texts is sufficient to start using Python. Users can also
find a SAD/Python/medm/java control program launcher.

5.4.2 Python

A Python-EPICS interface has been developed to utilize a scripting language, Python, in
the KEKB control system as a one of the two languages described in the previous sub-
section. Python is an object–oriented scripting language developed by G. van Rossum.
The clear yet powerful syntax of Python is suitable for rapid application development. A
Tk widget is integrated with Python as a Python object. It allows a user to access Tk
widgets from Python in a seamless way, and makes it easier to develop and maintain a
Python program with GUI(Graphical User Interface).
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Another advantage of Python is the ”module”. Functions and classes in the module can be
imported into a Python program as a library. Modules can be either written in Python or
C. This module structure allows the developer of a Python program to convert a Python
module into a C module without affecting the client applications of this module. Well–
defined API to access Python program data type from a C program helps to develop a C
module. It is also possible to create a module from an existing C program using SWIG
(Simple Wrapper and Interface Generator) 3 . SWIG can generate a wrapper program for
Python from prototype declarations in C, automatically.

A wide range of modules are available for Python, including an ORACLE interface, a Pos-
greSQL interface, Unix libraries, WWW/HTML support libraries, X windows, Tk widgets,
and Gtk widgets. Numerical Python provides many linear algebra functions.

The EPICS interface in Python, PythonCA, consists of two modules. One is a C module,
ca.c, and the other is a Python module, ca.py. The C module provides basic access to
the CA library, including open/close, get/put, and monitor. It also supports synchronous
group operation at the Python level. A monitor callback function is also defined as a
Python function. The Python module, ca.py, defines a channel object and other utility
functions. By default, PythonCA registers the socket associated with the channel to the
file descriptor manager of the Tk library.

5.4.3 SAD

SAD is the name of an accelerator modeling program and its programming language. The
syntax of the SAD programming language is designed after the Mathematica program-
ming language. These two programming languages are almost compatible with each other,
except for a few points. The largest difference is the symbolic manipulation of expres-
sion. Mathematica was originally developed for it, while SAD cannot handle it. For the
numerical handling of mathematics, SAD may in general be faster.

In the original implementation of Tk widget interface used to be routed to an embedded
Python/Tk interface. However, the current SAD can call the Tk widget library directly.

The EPICS interface in SAD supports open/get/put/monitor functions. A monitor call-
back function can be written in SAD, itself.

Most of the beam-handling applications are written by accelerator physicists in the com-
missioning group. These applications, including a beam–orbit control program and a
beam–collision control program, were registered to an application launcher program, ”kbl”.

3 URL: http://www.swig.org
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5.5 Portable Channel Access Server

To operate KEKB accelerators, tuning of the linac as the injector for the KEKB rings is
thought to be very essential. Ideally, the KEKB control system can control both KEKB
rings and the linac. Also both operators in linac control room and in KEKB control room
should be able to monitor and adjust the equipment of the other accelerators. For that
purpose, we had to develop suitable method in between the two systems to communicate
with each other. In EPICS collaborations, there is a Portable CA(Channel Access) Server
for EPICS developed at Los Alamos National Laboratory for SUN workstations. We de-
cided to modify it for our purposes, and have been implementing it to the KEKB control
system step by step. We can now monitor and set the magnetic field of the Q-magnets
in the linac, controlthe beam–transport magnets in the linac beam line, control klystrons,
and measure the beam positions by strip-line monitors through EPICS.

5.5.1 Connection of two Control Systems

To connect the KEKB control system and the existing linac control system, a gateway
must be provided between the two systems. In the first case, there is an IOC dedicated to
the linac, which keeps the database of the parameters and values of the linac equipment.
In the KEKB case, the total number of channels is estimated to be very large, and is
too much for an IOC. Therefore, this method may not be realistic. On the other hand, a
gateway workstation is provided in the configuration in the second case shown in Fig. 7.
The functionality of the EPICS CA is realized by a portable CA server implemented in
the gateway workstation. The EPICS portable CA server was designed and developed by
members of EPICS collaboration society. Its aim is to integrate a control system which
does not use EPICS into a control system based on EPICS. A UNIX gateway computer
will be placed between the two systems and will translate messages between the two
languages; one is EPICS and the other is a protocol specific to the non-EPICS system.
The CA protocol was implemented as a set of C++ classes. A user can easily extend CA
server classes using an inheritance technique to build a custom-made CA server.

5.5.2 Implementation of a CA Server

We have tested the two approaches described above. In both cases, an EPICS record
database is automatically generated from the equipment database. It is also useful to
have utility programs to generate screen– configuration data for a man–machine interface
program, MEDM(Motif based EDM). For these purposes, tools were designed and devel-
oped. A tool named CreateLinacDatabase was developed. It generates a linac parameter
configuration file Linac.conf, which in turn is converted to an EPICS database file using
dbLoadTemplate, a database template file. Another tool, CreateLinacAdlFile, generates a
screen description file for MEDM.
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Fig. 7. Schematic configuration of Portable Channel Access between KEKB and Injector Linac
control systems

5.6 Future Operating System on IOCs

The operating system on the IOCs is VxWorks. This operating system is not an open
system, but a proprietary one. Recent trends comcerning software operating systems in-
dicate that open software, like Linux, will be the main stream. EPICS is now ported to
a Linux operating system by M. Kraimer at Argonne National Laboratory. But, Linux,
itself, is not suitable for real-time purposes, and limited application programs can run on
Linux. For real-time applications, we surveyed on the so-called real-time Linux, such as
RT Linux, L4-Linux, and other implementation of Linuxen. We have chosen L4-Linux as a
base of software to test the idea of EPICS on Linux with a real-time scheduling kernel[25].

L4-Linux is a port of a Linux kernel on top of a real-time micro-kernel, named L4, or
its successor, named fiasco [41,42]. In this system, Linux as well as its processes run as
an independent task scheduled by a real-time scheduler in L4. L4-Linux was developed
while aiming to run a real-time system and a time-sharing system on a single computer,
and hence L4-Linux in itself is not a real-time system [43]. However, its basic architecture
allows Linux processes, with some modification, to be turned into a real-time process that
serves time–critical events. The point here is that the real-time process can share its virtual
address space with other normal Linux processes to communicate. This is an advantage in
porting IOC core programs, which are based on a multi-threading scheme [44]. In addition,
the real-time processes can be connected to a hardware interrupt through only L4, thus
avoiding Linux involved in the decision of process dispatching on interrupts. This feature
enables IOC application developers to implement device drivers as a user-level application,
even if they utilize hardware interrupts. In order to evaluate the feasibility of this scheme,
we have ported a CAMAC driver of EPICS to an L4-Linux based system running on a
PC-compliant VME CPU board. We have also measured the interrupt response of the
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system with heavy disk I/O activities as a background, using the same CPU board. The
measured interrupt latency was about 800 µseconds, which is considerably lower than the
value of several tens of milliseconds expected in normal Linux [25]. We expect that the
latency can be further reduced, down to around 100 microseconds or less.

6 Power Supply Interface Controller Module

The number of power supplies used for two accelerator rings is more than 2200. Most of
them are those for small magnets, like steering magnets. To connect such a large number of
power supplies to the IOCs, we adopted ARCNET as a field bus, and developed the Power
Supply Interface Controller Module (PSICM) [7], which is an ARCNET interface board for
the power supply. A PSICM has the shape of 3U Euro-card format (100mm x 160mm) with
a DIN 64-pin connector, and can be plugged into the power supply[Fig. 8. The ARCNET
allows the use several kinds of media. We adopted a shielded twisted-pair (STP) cable as
the media and HYC2485 as the media driver. This configuration allows up to 20 ARCNET
nodes to be connected on single segment in a daisy-chain manner. The STP cable includes
an auxiliary twisted-pair for the external trigger signal other than for ARCNET use. The
maximum number of ARCNET nodes is 20 in one segment, and is limited by the error
rate of the communication. Sometimes ARCNET reconfiguration occurs in some conditions
affected by the temperature and other environmental parameters. We finally introduced
an ARCNET hub to reduce number of nodes in a segment to obtain much more stable
operation. As described above, there are several types of power supplies. There are unipolar
and bipolar power supplies, new and modified old ones, 12 bits and 16 bits in accuracy.
The required specifications for such power supplies are widely distributed. We decided to
design the software installed on the Power Supply Interface Controller Module(PSICM)
which can recognizes what kind of power supply is connected. In other words, each power
supply must have its unique type and serial number data in itself. While ARCNET and
PSICM reduced a great deal of wiring cost, there are other control paths between the
IOCs and subsystems of the magnet power supply system [7,19]. The power supply output
current is monitored by a digital voltmeter with scanner. They are connected to the IOC
using GPIB. There are 274 magnet power supplies for the KEKB injection beam–transport
lines. They are also controlled in a similar manner.

6.1 Functional Requirements and Design

Although the KEKB storage rings do not require any synchronous ramping of magnetic
fields for acceleration, synchronous operation of the magnet power supplies is still impor-
tant. For efficient beam handling, the beam optics should be changed without loosing the
stored beam. To achieve this, the magnet power supply control system has two features.
One is the synchronous operation of PSICMs. A PSICM can receive an external trigger
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Fig. 8. Photograph of the PSICM

signal to start current tracking. The external trigger signal generated by the IOC in the
central control room is distributed to the IOCs in the local control rooms through the
software trigger system[17]. From an IOC to PSICMs, the trigger signal is sent through
an auxiliary twisted-pair in STP cables for ARCNET. Using an external trigger signal,
PSICMs can start tracking synchronously within 0.1ms or less. The other feature is a
flexible tracking curve. The PSICM is designed to receive arbitrary tracking data. This
feature is useful for fine synchronous operation. By using a proper tracking curve, it is
possible to compensate for the delay of magnetic field against the current setting, which
is caused by a delay in the power supply and a delay in the vacuum chamber. This feature
gives us another benefit, even for the asynchronous operation. For power supplies with a
slow response, a proper tracking curve makes current setting faster without any overshoot
than linear tracking. To make application programming simple, the magnet power sup-
ply control system requires that a control parameter can be given not only by current in
amps, but also by some abstracted parameter of beam optics, such as K1 for a quadrupole
magnet, K0 for a steering magnet etc. We generically call such parameters ”K-values” for
simplicity.
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6.2 Functions of PSICM

Since the PSICM has a microprocessor, it is not only an ARCNET interface board, but
also an intelligent controller. The control program is stored in EPROMs on PSICM. It
provides advanced functions of the power supply. The PSICM provides the following 3
functions: (1) generating control signals to the power supply for single actions such as
power on/off, interlock reset and a polarity change; (2) setting the output current; (3)
sending the status of the power supply and the PSICM, itself. The status can be sent
periodically, on demand or when specific status is changed. The PSICM communicates
with an IOC through ARCNET. The elemental unit of communication is a ”message”.
The message from an IOC to a PSICM is called a ”command”. More than one command
can be packed in single ARCNET packet. The message from a PSICM to an IOC is only
the status with a fixed format. To set the output current, the PSICM writes a digital
value to a DAC (Digital to Analog Converter) in the power supply. There are 3 tracking
modes and 2 trigger sources. The tracking modes are as follows: (1) the direct output
mode: the output current is set directly to the DAC without tracking. This mode is only
for diagnostics of the DAC and PSICM, itself. (2) The constant slewing rate mode: the
output current is changed with linear tracking. The PSICM receives the target current
and the time of the tracking duration from the IOC and writes a linearly interpolated
value to the DAC every 1ms. This mode is mainly used for stand–alone tests of the power
supply. (3) The wave-generator mode: the output current is changed with an arbitrary
tracking curve. The PSICM receives tracking data as an array of currents from the IOC,
then sequentially writes them to the DAC every internal clock interval, which can be a
multiple of 1ms. This mode is used for usual operation. The constant slewing rate mode
and the wave-generator mode require a trigger to start tracking. The trigger source is
either a ”start” command sent from the IOC through ARCNET or an external trigger
signal sent through the auxiliary twisted-pair.

6.3 Power Supply Control Software

6.3.1 Driver Level Software

Low-level software is EPICS Driver support and EPICS Device support in the IOCs. The
driver support is designed to perform communication through ARCNET. The elemental
services of the driver support are transmitting and receiving single packet. Inside the driver
support, packets are queued. There are a transmission queue and a receiving queue for
each power supply independently. The device support is designed to provide two kinds
of services. One category includes the services dedicated to the PSICM. Each service
corresponds to the single command of the PSICM such as power on/off, interlock reset
etc. Using these services EPICS records which perform the single action can be easily
created. Other category includes general purpose services which perform single packet
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I/O. They are nearly same as ones in the driver support. Using these services, although
EPICS record support should directly encode or decode messages on an ARCNET packet,
it is rather convenient when a record issues various commands sequentially.

6.3.2 Middle Level Software

Middle-level software provides various logic to the power supply system. Most of them
are resident in IOCs using a EPICS runtime database, which is a collection of the EPICS
records. Each power supply has a large special record, called a PS-record, which has
been developed only for magnet power supplys at KEKB. Most of the control logic is
concentrated in the PS-record and programmed in C.

6.3.3 Parameter Conversion

The most complicated logic is current setting. Since an application program may request
current setting in terms of a K-value, middle-level software must have parameter conversion
logic using some information, such as a magnetic field excitation curve. The parameter
conversion is typically carried out in the following manner: (1) a K-value is multiplied by
the beam-line momentum to yield an integrated magnetic field strength. The momentum
is kept in an EPICS software record. Each storage ring or injection beam transport line
has such a momentum record. (2) The integrated magnetic field strength may be modified
by a ”fudge” factor and a fudge offset. They are introduced to correct the magnetic field
excitation curve in an empirical manner. (3) The integrated magnetic field strength is
converted to current using a magnetic field excitation curve. Each PS-record has the
characteristic parameters of the excitation curve of its own magnet.

6.3.4 Asynchronous Operation

Asynchronous operation of current setting is an operation on a single power supply inde-
pendently of other power supplies. For this operation, an external trigger is not used. A
PS-record provides 4 methods of current setting. One is called ”Direct Setting”, in which
current setting is carried out regardless of magnetic hysteresis. The other 3 methods are
”Standardize Setting”, ”Simple Standardize Setting” and ”Sequence Setting”. In these
methods, the regular hysteresis loop is more or less considered. To set a lower current
by Sequence setting, for example, the current first goes up to the maximum current, and
then keeps the maximum current for a moment. Next, it goes down to zero current, and
then keeps zero current for a moment. Finally, it goes up to the target current. Thus, un-
less Direct Setting is used, the magnetic fields is kept on a regular hysteresis loop. These
methods are particularly useful for magnets in the injection-beam transport lines.
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6.3.5 Synchronous Operation

Synchronous operation of current setting is an operation on more than two power supplies
simultaneously without loosing the beam in the storage ring. In this operation, only Direct
Setting is possible. To perform a synchronous operation, frequent negotiations among
power supplies are necessary. As an arbiter of them, we introduced a server process for each
storage ring. It manages the sequence of the synchronous operation. The server process
runs in the host computer and is programmed in Python. Synchronous operation is carried
out according to the following steps: (1) the server receives a request with parameters from
an application program. The parameters are a set of power supply ID numbers, a set of
K-values to be set and the time of the tracking duration. These parameters are passed
through EPICS software records. (2) The server sends the K-values to the PS-records.
(3) Each PS-record converts the given K-value to the current one, and then estimates the
minimum time of the tracking duration and sends it back to the server. (4) The server
checks the estimated minimum times. If the application program does not specify a time,
the maximum estimated times is adopted. (5) The server sends the adopted time to the
PS-records. (6) Each PS-record calculates tracking data and sends them to the PSICM. (7)
Each PS-record checks the status of the PSICM. If the PSICM is ready to start tracking,
the PS-record sends ”ready” to the server. (8) The server waits until all PSICMs become
ready, and then the server generates an external trigger signal. (9) The server checks
whether all power supplies have started tracking.

7 Communication System

The KEKB accelerator communication system consists of a bi-directional CATV network,
a mobile-phone system, a public-address system and a directly connected intercom system.

7.1 CATV System

The CATV system has been working for about 18 years, since TRISTAN was commis-
sioned. It has 33 channels downward and a few channels upward. The frequency range is
not popular now in Japan and the equipment is now obsolete. Therefore, we are going to
use the KEK in-site network for distributing video information.

7.2 Information Exchange System

There are mutual information exchange systems with other sections in the KEK site, such
as the facility support group, the physics experiment group and the photon factory group.
A serial communication line is used to receive information from the facility support group,
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i.e. air-conditioning, cooling water and electric power supplies data. Between the physics
experiment group and the KEKB accelerator control group, a gateway IOC is located
near the BELLE detector, and information is exchanged through the memory of the IOC.
Information exchange between the Photon Factory and KEKB is done mainly using video
information and an intercom.

7.3 Video Signal Distribution System

Almost all of the video signals generated around the KEKB accelerators are sent once
to the central control building for distributing them to various parts of the accelerators.
The signals are sent through optical-fiber cables using E/O and O/E converter pairs. The
signals which come into the central control building are buffered by amplifiers, and some
of them are sent to the CATV system. Some of the signals are sent to local control rooms
through a patch-panel. Using this system, we can record, distribute or display utilizing
commercially available equipment.

8 Radiation Safety System

8.1 Overview

The purpose of the radiation safety system of the KEK B-factory (KEKB) is to protect
personnel from radiation hazards. It consists of an access control system and a beam
interlock system. The access control system protects people from strong radiation inside
the accelerator tunnel due to an intense beam by controlling access to the beamline area.
On the other hand, the beam interlock system prevents people from radiation exposure by
interlocking the beam operation. The present system was originally constructed [45] for
the TRISTAN e+e− collider, and modified to meet the requirements of KEKB. It secures
not only KEKB, but also the Photon Factory Advanced Ring (PF-AR), which used to be
the booster ring of TRISTAN, and is now dedicated to synchrotron photon experiments.
For the convenience of accelerator operation and access control, the region covered by the
safety system is divided into 3 major access control areas: the KEKB area, the PF-AR
area, and the beam-transport (BT) area. These areas are schematically shown in Fig. 9.
The KEKB and BT areas are separated by inter-area gates, and so are the PF-AR and
BT areas, while a concrete wall of 3m-thick separates the BT area from the linac area,
which is secured by another safety system.
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Fig. 9. Access control areas and devices for access safety.

8.2 System Architecture

Figure 10 schematically shows the present safety system. The core of the system consists
of programmable logic controllers (PLCs), which satisfy the requirements for the safety
system, such as the reliability, maintainability and flexibility. A supervisory PLC and two
PLCs, one for access control and the other for communication with the accelerator control
system, are installed in the KEKB control building, while local PLCs (PLC#1 - PLC#15)
are distributed around the KEKB and PF-AR rings. The maximum distance between the
supervisory PLC and the local PLC is 2,000 m.

Typical local PLCs have 80 input channels and 96 output channels for the status read
and control of local devices, such as entrance doors and beam stoppers. Each local PLC
has a 16ch output module and a 16ch input module for exchanging safety signals with
the supervisory PLC. Because the number of channels for the communication is relatively
small, signals from local devices are processed in each local PLC, and the summarized
signals are sent to the supervisory PLC. These signals are transmitted by optical-fiber links.
In the case of communication errors of the fiber links, the safety system stops accelerator
operation.

The main operator interface of the system is a classical panel with key-switches and push-
buttons for setting the system state, LED lamps for status indication, and an alarm buzzer.
It has the advantage of reliability, but the disadvantage of inflexibility. It provides minimum
information about the system status. LED lamps of the operator panel indicate whether
each area is safe or not, but cannot display the status of each local device. Detailed
monitoring is carried out with color graphic displays. For example, a building outline with
doors is indicated on the display, showing the door positions; the status of each door is
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indicated by color. All of the status information on local devices and PLCs is obtained
through Modem links, which are utilized to upload each PLC program developed on a
workstation as well. The access control panel is also an important operator interface,
which is used for the access control described below.
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Fig. 10. Architecture of the radiation safety system.

8.3 Access Control System

8.3.1 Entrance

As mentioned before, there are three access control areas: the KEKB area, the PF-AR
area, and the BT area. Every area has several entrances and emergency exits. The KEKB
area, for example, has 8 entrances, 7 auxiliary entrances, and 18 emergency exits. Each
entrance is equipped with an ID card reader and a key-box with safety keys. A person
intending to access this area must put his/her ID card into the card reader. The data on
the card are checked with a database, and if he/she is registered, a safety key is released.
The entrance door can be unlocked using the safety key. He/She is required to keep the
safety key during the stay in the area, and return it to the key-box when leaving. The
safety system can enable/disable the key release and door release for the access control.
The access procedure described above is the one used when they are enabled. An intercom
and a TV camera are also installed at each entrance to facilitate access control.
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8.3.2 Access States

For the present system, there are three access states: Free Access, Limited Access, and No
Access, which are described below.

Free Access In general, all of the hazardous components are shut down, and the area
is safe in this state. Even in this state, however, the entrance doors are locked to pre-
vent access of non-radiation workers. Radiation workers can access the area without an
operator’s supervision.

Limited Access When an area is transferred to this state from the Free Access state, a
search of the area must be carried out to sweep it. After a search, only access under the
operator’s supervision is allowed. To prevent access without supervision, the key release
and door release are disabled. When access is necessary, the operator enables them by
turning on switches at the access control panel. The operator can communicate with
workers entering by the intercom and watch them on TV screens.

No Access This is a state for beam operation. No access is allowed. Transition to this
state is possible only when no emergency-stop button is depressed, all of the doors are
closed and locked, and all of the safety keys have been returned to the key-boxes.

8.3.3 Access Safety

Safety of each access control area is accomplished by beam stoppers and dipole magnets
(safety magnets), which are shown in Fig. 9. To make the KEKB area safe, for example,
stored beams in the high-energy ring (HER) and the low-energy ring (LER) must be
dumped, and injection to both rings must be inhibited. To inhibit HER injection, dipole
magnets, BH1AE and BH1E.1-5, are turned off and a BT Beam Stopper BBS4 is inserted.
LER injection is prevented by turning off the dipole magnet, B1P, and by inserting a BT
beam stopper, BBS1. KEKB has 4 ring-stoppers: 2 for LER, and 2 for HER. However, they
are not designed to withstand the high beam power of KEKB, because their purpose is not
to dump the high-current beam, but to assure access safety. To dump a beam, a beam-
abort system is installed in each ring, which consists of kicker magnets, a Lambertson
magnet, and a beam dump. When people access the KEKB area, the abort systems of
both rings are triggered first, and then the ring stoppers are inserted into both rings. Even
if a small potion of a beam is accidentally left after a beam abort, it is completely dumped
by beam stoppers.

The KEKB area is subdivided into 8 sections by inter-section gates: 4 straight and 4 arc
sections as shown in Fig. 9. Normal-conducting RF cavities are installed in the Oho and
Fuji straight sections, and superconducting RF cavities in Nikko straight section. The RF
operation of the cavities is interlocked to be off when the corresponding subsection is in
the Free Access state. Door switches are also included into the RF interlock to prevent
people from X-ray exposure during access in the Limited Access state.
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8.4 Beam Interlock System

The beam interlock system consists of emergency stop buttons, door switches, safety keys,
radiation monitors, beam-loss monitors, and meter relays. The main purpose of the former
three kinds of devices (emergency-stop buttons, door switches, and safety keys) is to
protect people against radiation exposure inside the accelerator tunnel. On the other hand,
the function of radiation monitors, beam-loss monitors, and meter relays is to protect
people outside the accelerator housing. The response of the safety system to the activation
of each interlock device is summarized in Fig. 11 and described below.

Radiation Safety System

Access Control System Beam Interlock System

Door Lock Safety Key Radiation�
�Monitor

BT Beam�
�Loss�
�Monitor

Emergency Stop

Door Switch

Meter Relay
ID Card Reader�
�Warning Lamp�
�Intercom�
�TV Camera

Free Access�
�Limited Access�
�No Access

Turn off a Bend of Each Ring Turn off All Ring Bends and RF

Remove Gun Trigger

Turn off Gun High Voltage

Dump Stored Beam�
�-> KEKB: Trigger Abort System�
�-> PF-AR: Insert Ring Stoppers

Stop Injection�
�-> Turn off Safety Magnets�
�-> Insert BT stoppers

Enable/�
�Disable

Fig. 11. Devices for access control and beam interlock.

Emergency Stop Button When an emergency-stop button is pushed, the safety system
triggers the beam-abort system, and turns off all of the ring magnets and the RF system.
A beam-request signal to the linac is removed to stop beam injection. Furthermore,
safety magnets are turned off, and BT stoppers are inserted. When an area is transferred
to the No Access state and beam operation is going to be started, an audible alarm is
sounded in the area. People accidentally left without a safety key can prevent beam
operation by pushing an emergency-stop button.

Door Interlock Every door separating an access control area from other areas has an
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electrical lock and at least one switch to indicate the door status. If a door fault is
detected during beam operation, the safety system sends a trigger signal to the beam-
abort system, and turns off one ring magnet of each ring. Beam injection is also stopped
by removing the beam-request signal, turning off the safety magnets, and inserting the
BT stoppers. In the No Access state, the door release signal to the electrical lock is
disabled.

Safety Key A key-box with safety keys is equipped near to each entrance together with
an ID card reader for key release. It is required for everyone accessing the area to take a
key and to carry it during a stay in the area. Once a key is removed, the beam operation
is interlocked until all keys are returned. The key release is disabled in the No Access
state.

Radiation Monitor Although concrete shielding has been added along the beam line in
the experimental halls, the experimental halls are still the weakest parts concerning the
radiation containment, because the other parts of the KEKB ring are covered with earth
soil with a thickness of 6.7 m. The shielding walls are designed so that the radiation level
due to beam loss under normal operation is less than the acceptable limit. However,
accidental beam loss may cause a higher radiation level outside the shielding walls.
Therefore, two radiation monitors are installed in every experimental hall. Each monitor
has a BF3 proportional chamber for neutrons and an air-filled ionization chamber for
photons. If the radiation level becomes higher than the preset limit, the safety system
stops beam injection to the KEKB rings.

Beam Loss Monitor Beam-loss monitors were installed in the BT area, which are in-
cluded in the interlock system. If there is an accidental beam loss in BT, the radiation
level on the ground above the BT tunnel may become larger than the limit. Therefore,
the beam injection is interlocked to be off. Beam-loss monitors are also installed in the
KEKB area, and are used to stop beam operation for machine protection. They are not
included in the safety system because the KEKB tunnel has sufficient shielding.

Meter Relay The current of the dipole magnet, BH1AE, is monitored by a meter relay.
If the current of BH1AE is accidentally turned off during KEKB injection, the electron
beam is transported to the AR injection line and lost somewhere near the BT-AR
boundary. This may increase the radiation level of the AR area near the boundary.
When a decrease of current is detected during KEKB injection, therefore, the beam is
turned off by removing the gun trigger.

8.5 Other Hazards

In the accelerator tunnel, there are various hazards other than the radiation. They are
electrical (high voltage, and high current), high magnetic field, and cryogenic hazards.
The safety system is also useful to control the access into an area with these hazards.

In the interaction region of the KEKB ring, there are superconducting quadrupole magnets
and a solenoid magnet of the BELLE detector, all of which yield strong leakage magnetic
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fields. Therefore, the excitation of these magnets is usually carried out after the Tsukuba
straight section is transferred to the Limited Access state.

Superconducting accelerating cavities are installed in the Nikko straight section. The acci-
dental release of liquid helium or nitrogen in the accelerator tunnel may cause a shortage
of oxygen. Therefore, access is limited during operation of the cryogenic system. The oxy-
gen level is monitored at several points along the beam line. If the oxygen level decreases
below 18%, the safety system sounds an alarm to evacuate the Nikko straight section.

9 KEKB TIMING SYSTEM

9.1 Introduction

The KEKB control system required a new timing system to match a low longitudinal
acceptance due to a low alpha machine. This timing system is based on a frequency
divider/multiply technique and a digital delay technique. The KEKB timing system is
slightly complicated, because the KEKB ring RF frequency (508.887MHz) is not a divisor
of the Linac RF frequency (2856MHz). The KEKB ring frequency and the Linac frequency
are locked with a common divisor frequency (10.385MHz). The common divisor frequency
determines the injection timing. This section gives an overview of the KEKB timing system
and the RF bucket selection system.

9.1.1 Difference in the injection schema between TRISTAN and KEKB

At TRISTAN a 5-bunch injection system was adopted, which means that 5 bunches of the
Linac beam were merged into a bunch of the TRISTAN beam. We can’t inject multi-bunch
beams in order to match the low longitudinal acceptance, because the KEKB ring is low-
alpha machine. Timing jitter between injected beam and RF bucket is allowed less than
30 psec. That of low-level control system is limited within several psec. We thus intended
to inject a single, high-current bunch beam. Furthermore, we synchronize the KEKB RF
frequency (508.887MHz) and Linac frequency (2856MHz) so that we can always catch
Linac beams at the same phase of the KEKB RF frequency.

9.1.2 2856 MHz and 508.887 MHz

Although the KEKB RF frequency is not a divisor of the Linac RF frequency, those
frequencies have a common divisor frequency (10.385MHz). Because of the existence of a
common divisor frequency, we can synchronize the KEKB RF bucket timing and Linac
beams at the common divisor frequency intervals. The Linac RF frequency and the KEKB
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KEKB ring reference LINAC reference

2856 MHz

571.2 MHz

508.887 MHz 508.887 MHz

114.2 MHz

10.385 MHz 10.385 MHz
Table 2
The reference frequencies used in KEKB ring and LINAC

RF frequency are locked by a common divisor frequency with a newly developed multi-
synthesizer.

9.2 Multi-synthesizer

There are two types of multi-synthesizers newly developed for KEKB. We now introduce
one type. Fig.9.2 shows a block diagram of the synthesizer. The source of the synthesizer
is 571.2 MHz, which is used with a subharmonic buncher in the Linac. The frequency,
571.2 MHz, is multiplied by 5 and generates 2856 MHz,which is used as the LINAC RF
frequency. Simultaneously, the frequency 571.2 MHz is divided by 5 and generates a 114.2
MHz frequency, which is also used with another subharmonic buncher. The 114.2 MHz
frequency is divided by 11 and generates a 10.385MHz frequency, which is a common
divisor frequency. The common divisor frequency is multiplied by 5 and mixed with 571.2
MHz frequency, and finally generates a 508.558MHz frequency, which is the KEKB RF
frequency. All of the frequencies are connected and locked with a common divisor frequency
10.585 MHz. All reference frequencies are listed in Table 9.2.

55F0

571.2MHz

1/5 1/11 x6

Xx5

275F0

2856MHz

49F0

508.8875MHz

11F0

114.2MHz

6F0

10.385MHz
55F0

571.2MHz

55F0

55F0
11F0

F0

F0

Fig. 12. KEKB Multi-synthesizer

9.3 Overview of the KEKB timing system
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9.3.1 Single Reference Frequency in the KEKB machine

Although the KEKB machine consists of two rings (HER and LER), it has a single ref-
erence frequency 508.887 MHz. We can’t change the reference frequency of each ring
independently. Of course the phase of the reference frequency of each ring can be changed
independently. We avoided the complication of a double reference system. Since we never
measure the dispersion parameters or the chromaticity parameters of both rings simulta-
neously, no problems have occurred with the single reference system.

9.3.2 Distributing the reference frequency

The reference frequency is distributed with coaxial cables and optical fiber cables as shown
in Fig.9.3.2 Main line which is circulated around the KEKB ring consists of coaxial cables,
which are locked with PLL in phase. The main line has stabilized within 1 degree around
the KEKB ring. Satellite lines consist of optical fiber cables, of which phase stabilities
match less than 0.2 ppm per degree in electrical length. The satellite line has stabilized
less than 0.5 degree in total.
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9.4 Bucket Selection Method
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9.4.1 10.385 MHz and 2.028 kHz

Since the KEKB RF frequency (508.887MHz) and the LINAC frequency (2856MHz) are
locked in 10.385 MHz intervals, as shown in the synthesizer paragraph, we can inject
LINAC beams in this intervals. The interval equals a 49-bucket spacing in the KEKB
ring. Since the frequency (10.385 MHz) divide by 5120 (KEKB harmonic number) equals
2.028 kHz, we can inject LINAC beams in 2.028 kHz intervals at the same bucket in the
KEKB ring. We thus choose a frequency of 2.028 kHz as the basic injection frequency.
We can choose any buckets with delay timing from the basic frequency in 10.385 MHz
interval units, that is 49-bucket spacing in the KEKB ring. Since the number 49 and the
number 5120 have no common divisor, the 10.385 MHz intervals (49-bucket spacing) times
5120 equals 2.028 kHz interval. Thus within a 2.028 kHz interval we can select any bucket
addresses, as shown by:

Address# = mod(delay# × 49, 5120)

In reverse

Delay# = 209 × mod(address#, 49) + int(address#/49)

9.4.2 Injection Phase and Collision Phase

We can match the phase between the KEKB RF bucket and the LINAC beam by chang-
ing the KEKB reference frequency phase. The phase between the electron and positron
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collision timing at the intersection region can be adjusted by changing the LER RF phase.

9.5 Frequency Shift and Phase Lock to the Linac synthesizer

At injection timing, the KEKB RF frequency and the LINAC frequency are locked at a
frequency 10.385 MHz. After injection, The KEKB RF frequency can be changed in order
to adjust the ring circumference and in order to measure the dispersion and chromaticity
parameters. When the KEKB RF frequency is changed, the frequency-lock system with
the LINAC frequency is killed. At the next injection timing, we first lock the KEKB 10.385
MHz frequency with the LINAC 10.385 MHz frequency and then lock the KEKB 508.887
MHz frequency with the LINAC 508.887 MHz frequency. We can thus continuously add
KEKB ring beams even after frequency changing. The LINAC 508 MHz frequency and the
LINAC 2856 MHz frequency are always locked with the LINAC 10.385 MHz frequency.

9.6 Beam Abort Timing

In order to protect insertion detectors and accelerator instruments, we must sometimes
abort beam in the case that the beam irradiate radiation to the detector, or in the case
accelerator instruments suffer heavy beam loading. Since we introduced kicker magnets to
abort beam, of which rise time is around 1 micro second, we can’t fill the beam during the
rise time interval, which is called beam gap. Besides, we have to adjust the abort timing
to the beam gap when the beam is aborted. Thus the abort kickers are synchronized with
the revolution timing that is connected the beam gap.

9.7 Summary

Since we introduce single-bunch injection and a frequency lock system between the KEKB
ring frequency and the LINAC frequency, we can inject LINAC beams within several psec
jitters. We can select any bucket address in the KEKB ring, change the ring frequency
freely without injection timing, and inject LINAC beams continuously during the next
injection timing.
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