The SuperKEKB Has Broken the World Record of the Luminosity

SuperKEKB

SuperKEKB project history

- Phase1 operation (2016.Feb. ~ June);
 - Vacuum scrubbing, low emittance beam tuning, and background study for Belle II detector installation
 - w/o final focusing system (QCS) and Belle II detector
- Phase2 operation (2018.Mar. ~ July);
 - Damping ring for positron was introduced.
 - Pilot run of SuperKEKB and Belle II w/o pixel vertex detector (PXD)
 - Demonstration of nano-beam collision scheme
 - Study on background larger than at KEKB due to much lower beta functions at IP.

- Phase3 operation (2019.March~);
 - Physics run with fully instrumented detector.
 - Top-up injection in both rings
 - Phase3 2019ab (2019.3~7)
 - "Status of Early SuperKEKB Phase-3 Commissioning" by A.Morita (WEYYPLM1) @ IPAC'19 (2019.5.22)
 - Phase3 2019c (2019.10~12)
 - Phase3 2020ab (2020.2~)
 - "Highlight from SuperKEKB Beam Commissioning" by K. Shibata @ IPAC2020 (2020 May)

✓ New nomenclature of each run of Phase3

History of beam operation

Comparison of machine parameters

			IPAC2020 K. Shibata		IPAC2022 at present			
	KEKB achieved		SuperKEKB 2020 May 1 st		SuperKEKB 2022 June 8 th		SuperKEKB design	
	LER	HER	LER	HER	LER	HER	LER	HER
I _{beam} [A]	1.637	1.188	0.438	0.517	1.321	1.099	3.6	2.6
# of bunches	1585		783		2249		2500	
I _{bunch} [mA]	1.033	0.7495	0.5593	0.6603	0.5873	0.4887	1.440	1.040
β y* [mm]	5.9	5.9	1.0	1.0	1.0	1.0	0.27	0.30
ξγ	0.129	0.090	0.0236	0.0219	0.0407 (0.0565)ª	0.0279 (0.0434)ª	0.0881	0.0807
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.:	11	1.57		4.65		80	
Integrated Luminosity [ab ⁻¹]	1.0	04	0.	03 doubl	ed 0.4	40	5	0

a) High bunch current collision study

Comparison of Luminosity

The SuperKEKB Has Broken the World Record of the Luminosity!

Machine Parameters of SuperKEKB

	LER	HER	
Beam Energy	4.0	7.0	GeV
Circumference	30	16	m
Crossing angle	8	33	mrad
Crab waist ratio	80	40	%
Beam current @Maximum Luminosity	1.321	1.099	А
Number of bunches	22	49	
Bunch current @Maximum Luminosity	0.5873	0.4887	mA
Total RF voltage V_c	9.12	14.2	MV
Synchrotron tune v_s	-0.0233	-0.0258	
Bunch length σ_z	5.69	6.03	mm
Momentum compaction α_c	2.98E-4	4.54E-4	
Betatron tune v_x / v_y	44.524/46.592	45.532/43.575	
Beta function at IP β_x^* / β_y^*	80/1	60/1	mm
Measured vertical beam size (XRM) $@IP \sigma_v^*$	0.224	0.224	μm
Vertical beam-beam parameters ξ_y	0.0407	0.0279	
Beam lifetime	8	24	min.
Luminosity (Belle 2 Csl)	4.	65	10 ³⁴ cm ⁻² s ⁻¹

- Introduction of crab waist at SuperKEKB
 - Motivations
 - The beam-beam performance was poor in spite of all of knob tunings for improving it. It was limited by beam-beam resonances which can be suppressed by crab waist.
 - Method
 - FCC-ee type scheme: use of imbalance sextupoles in the vertical local chromaticity correction section.
 - Time table
 - 2020 March 16th : LER crab waist (40%)
 - 2020 March 24th : LER crab waist (60%)
 - 2020 April 24th : HER crab waist (40%)
 - 2020 June 1st : LER crab waist (80%)

- Benefits of use of crab waist scheme
 - Suppression of beam-beam blowup
 - Specific luminosity was improved.
 - Increase of the bunch currents of both beams
 - Without crab waist, beam injections was limited due to beam blowup.
- Beam lifetime issue
 - Dynamic aperture shrinks w/ crab waist and the lifetime decrease w/ crab waist was expected.
 - But in $\beta y^* = 1$ mm case, no lifetime decrease was observed in LER and HER.
 - The narrow physical apertures at collimators determine the lifetime.
 - In the case of lower βy^* , simulations showed the lifetime w/ crab waist will set a strong limit.

Luminosity improvement [2/4] Higher beam currents

- We have been increasing beam currents with fighting with obstacles
 - Obstacles
 - Hardware damages due to fast beam losses
 - Frequency hardware troubles on collimators (and Belle II sub-detectors) happened when the bunch current in LER is larger than 0.7 mA. The recent increase in beam currents was achieved by increasing the number of bunches while respecting the limit from bunch current limit (<~0.7mA/bunch). (to be addressed later)
 - Detector beam background
 - Beam aborts
 - Beam instability
 - Beam injection

One of the most vulnerable sub-detectors is the Time of Propagation (TOP) particle ID system

- Current background rates in Belle II are acceptable and well below limits
- Belle II did not limit beam currents in 2021 and 2022
 - It will limit SuperKEKB beam currents eventually, without further background mitigation
- To reach the design luminosity an upgrade of crucial detector components is foreseen (e.g. TOP short lifetime conventional PMTs)

In view of replacement of a vulnerable part of PMTs in LS1 (Long Shutdown 1), the BG limit of TOP PMT was raised to 5 MHz in 2022.

Beam Gas BG in LER is expected to be lowered in the process of vacuum scrubbing. We also expect that BG will be lowered by IR radiation shield reinforcement done in LS1. On the other hand, luminosity related BG will increase with a higher luminosity.

Luminosity improvement [3/4] Bunch-by-bunch feedback gain

- In May 2021, the luminosity increased by lowering gain of the bunch-by-bunch feedback system in HER.
- Noise mixed in FB system affected the luminosity.
 - The noise was caused by a troubled module. Since the noise frequency was near the betatron tune, its effect was large.

Luminosity improvement [4/4] β_v

In 2022b run, we tried $\beta y^*=0.8$ mm. The specific luminosity was higher than $\beta y^*=1$ mm case. We could not store higher beam currents due to poor injection efficiency. We will re-try

$I_{b+}I_{b-}$ (mA²)

In the data in cyan and blue, estimated values of βy^* in HER were less than 1mm(setting value) due to horizontal orbit change in SLY depending on total beam current.

SLY: Sextupoles at local chromaticity correction

Performance limiting issues [1/4] Fast & large beam loss

- Observations
 - Fast and large beam loss (< 3 turns) (particularly in LER)
 - The loss causes damage of collimators and Belle II inner sensors, and QCS quench
 - Empirical rule: Bunch current must not exceed 0.7mA.
- Obstacle to machine operation
 - We have been conservative in increasing beam currents (particularly bunch currents).
 - This issue determines the speed of increasing beam currents and then slows down increase of luminosity.
- Mechanism of fast & large beam loss
 - Still not understood well
 - A hypothesis was proposed by T. Abe.
 - A microparticle heated by the beam-induced field causes a macroscopic vacuum arc.
 - We will continue to study this hypothesis
 - A joint Belle2-SuperKEKB team has been working to identify the original places of fast beam losses. Recent progress shows collimators near the injection region are the most possible candidates.

(https://kds.kek.jp/event/41394/contributions/209334/attachments/154298/195935/16aA561-03.pdf)

• Investigations are ongoing to fully understand this issue and countermeasures are being sought.

- Very fast beam loss: within 3 turns
- No bunch (dipole) oscillations were observed before beam loss.
 - In some cases, beam oscillation in the previous turn of beam loss was observed.
- No beam size blowup is observed before beam loss.

History of large beam loss events 2022

The three big accidents of LER beam loss in 2022 happed at $I_b > ~0.7 \text{mA/bunch}$ within a day after increasing the beam current at the three different $N_{\text{bunch}} \rightarrow \text{Empirical rule}$: we must not exceed 0.7mA/bunch.

In the case of a small number of bunches (N_{buch} = 793, 61, 31), we haven't observed the large beam loss with a higher bunch currents.

Occasionally, large beam loss in LER happened with bunch currents lower than 0.7 mA but the total current was high (For example, on June 3^{rd} , $I_b = ~0.62 \text{mA/bunch}$ with a high total current (1325mA)).

- After a huge beam loss event on June 6th in 2021, LER BG increase significantly.
- D02V1 collimator jaws were severely damaged (deep scar on the bottom jaw).
- Typically, collimator replacement work and the baking runs take 3~4 days.

Performance limiting issues [2/4] Beam injection

SuperKEKB injection scheme

K. Furukawa et al, Poster, THPOST011

- Injector Linac provides e+ and e- beams. (e+: thermionic gun, DR, e-: RF gun)
- Synchronization between injector and rings allows 1-bunch or 2-bunch injection per pulse.
- Top-up injection is achieved for e+ and e- beams at 50Hz at maximum(sum of e- and e+).
- Beam current limitation
 - The maximum stored beam currents in the rings are determined by the balance between the charge sent from Linac and the charge loss due to beam lifetime.
 - Increasing linac charge is important.
 - The shorter beam lifetime at smaller βy^* (dynamic aperture) requires a more powerful injection. Conversely, injection sets a limit on the achievable βy^* .
 - Machine operation with the optics of $\beta y^* = 0.8$ mm is being tried in this run.
 - The injection efficiency is also a very important issue.
 - Depends on βy^* , bunch currents, machine tuning, collimator setting...
 - Typical values of injection efficiency with $\beta y^*=1mm$: ~50%(LER), ~40%(HER)
 - Emittance preservation in Linac and BT is important.

Linac, BT Emittance measurement using wire scanners (2021c)

Target (design) valuese+e-Normalized emittance (H/V) [μ m]100/1540/20

For better injection efficiency, suppression of emittance growth in BT lines is important.

(12th The emittance growth is bungPAC2022 SuperKEKB 12. Funakoshipe caused by CSR effect

Performance limiting issues [3/4] Beam-beam performance

 Observed luminosity performance is much lower than simulations with BBSS (Beam-Beam Strong-Strong). This has been and will be a challenge at SuperKEKB.

D. Zhou, et al, Poster, WEPOPT064

- Candidates of causes
 - Machine imperfections: Non-zero linear and chromatic coupling (M. Masuzawa, Contributed Oral, TUOZSP2) and dispersions at IP, beam-current dependent optics distortion due to orbit change at QCS* and SLY*, etc.
 - Imperfect crab waist scheme; Interplay of beam-beam interaction and beam coupling impedance.
 - Beam oscillation excited by injection kickers at LER causes luminosity loss by ~10%.

	2022.0	4.05	Commonte
	HER	LER	Comments
Ibunch (mA)	le	1.25*le	
# bunch	393	3	Assumed value
ε _x (nm)	4.6	4.0	w/ IBS
ε _y (pm)	35	30	Estimated from XRM data
β _x (mm)	60	80	Calculated from lattice
β _y (mm)	Ι	Ι	Calculated from lattice
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o MWI)
Vx	45.532	44.524	Measured tune of pilot bunch
Vy	43.572	46.589	Measured tune of pilot bunch
Vs	0.0272	0.0233	Calculated from lattice
Crab waist	40%	80%	Lattice design

Operation parameter set for BBSS simulation

- Ways to better beam-beam performance
 - Beam-beam simulations predict better beam-beam performance with
 - Smaller vertical emittance in single beam (matter of optics corrections)
 - Higher crab waist ratio in HER (strength)
 - Identification of causes of discrepancy between simulations and experiments
 - Better working points
- Beam-beam parameters
 - Achieved values in physics runs: : $\xi y(LER) = 0.0392$, $\xi y(HER) = 0.0269$
 - Achieved values in high bunch collision study: $\xi y(LER) = 0.0565$, $\xi y(HER) = 0.0434$
 - By increasing bunch currents in physics run, higher ξ y and then a higher luminosity is expected.

Performance limiting issues [4/4] Impedance related issues

- Single bunch effect
 - LER TMCI (Transverse Mode Coupling Instability)
 - The apertures of vertical collimators scale as βy*, TMCI will set a limit on the bunch current. Extensive machine studies have been done on this issue.
 - With the use of 2 vertical collimators and taking into account the impedance from the high-β region around final focus quadrupoles, the TMCI threshold will be lower than the design bunch current of 1.44mA when βy*<0.6mm.
 - By introducing a nonlinear collimator (NLC), we can use more vertical collimators and meanwhile reduce Belle II BG.
 - Single bunch beam blowup in LER (-1 mode instability)
 - Beam blowup has been observed with a threshold ~0.8mA/bunch, .
 - This blowup has been intensively studied. The interplay of the feedback system and vertical impedance was identified to be the main source of beam blowup. Fine-tuning of FB system helped suppress the blowup.

• Multi-bunch (coupled bunch) instability

- Low-frequency resistive wall (RW) impedance gives the fastest growth time (1.6ms@600mA in HER, 3.6ms@600mA in LER). This instability has been well suppressed by the bunch-by-bunch feedback system so far.
- The longitudinal coupled bunch instability caused by fundamental mode impedance of RF cavities has been well suppressed by -1 mode dumpers in both rings.
- Electron clouds
 - In the current beam condition (4 or 6 ns bunch spacing, <0.7 mA/bunch), no significant beam size blowup due to the electron clouds effect has been observed in LER.

Study on TMCI and -1 mode blowup

- We've observed vertical beam-size blow-ups around 0.8 mA/bunch in LER with single-beam operations, and this value is about 50% or more lower than an expected TMCI threshold.
- When the beam-size blow-ups have been observed, a peak corresponding to v_y - v_s appears (so we call this "-1 mode instability").
- The impedance in vertical collimators contributes to this instability, and opening apertures of them can increase the threshold.
- The vertical bunch-by-bunch feedback system with a standard setting enhances this instability, and its tunings can suppress the instability.
- The mechanism of the -1 mode instability is under investigation (S. Terui et al., Poster, WEPOTK050), but we've found two ways to deal with this instability.
 - 1. Tuning of the vertical bunch-by-bunch feedback
 - 2. Reducing the impedance in the vertical direction by opening vertical collimators
 - ✓ The second point is one of motivations to introduce the nonlinear collimator.

Peaks in a tune spectrum and a Bunch Oscillation Recorder (BOR). The expected bunch current when the 0- and -1-mode couples is 2 mA/bunch or above.

T. Ishibashi

Upgrade plan

- Long Shutdown 1 (LS1): July 2022 September 2023
 - Belle II: additional VXD detector installation, TOP counter PMTs replacement
 - SuperKEKB: Upgrade works in this opportunity
- Medium term plan for increasing luminosity
 - We will aim at the luminosity of 1 x 10³⁵ cm⁻² s⁻¹ within 1 or 2 years after LS1 with $\beta y^* = 0.8$ mm.
 - The operation with $\beta y^* = 0.6$ mm will also be tried.
- Long term plan for luminosity upgrade
 - To squeeze βy* down to design values (0.27mm in LER and 0.30mm in HER), further upgrade works will be required, including an extensive IR upgrade to improve beam lifetime. We have a plan to do those upgrade works in Long Shutdown 2 (LS2) in around 2027. The upgrade plan is being studied.

Major upgrade items during LS1

Example of parameters for L= 1 x10³⁵cm⁻²s⁻¹

	LER	HER	
# of bunches	2345+1		
Luminosity	1.0 x 10 ³⁵ cm ⁻² s ⁻¹		
l _{total}	2.35 A	1.64 A	
I _{bunch}	1.0mA	0.7mA	
βγ*	0.8mm	0.8mm	

- This parameter list was made based on a high bunch current collision study.
 - We will need higher bunch currents.
- We will aim to achieve the parameter list.
- In the process of aiming at the parameter set, we will need to study various issues and aim at the luminosity with solving issues found and with modifying the parameter set.

International Task force for SuperKEKB upgrade

Mission

- Bring ideas and exchange notes to solve various problems we face as a luminosity frontier machine, to achieve SuperKEKB design luminosity.
 - Short term
 - Working together on a to-do list with priority for LS1 to achieve luminosity of the order of 10³⁵ cm⁻² s⁻¹ without any large-scale modification of accelerator components.
 - Longer-term
 - Searching for ideas to achieve the design luminosity.

Four working groups (sub-groups) organized

- Optics
- Beam-beam
- TMCI
- Linac

History

- Started with the Initial members recommended by ARC members
- The first kick-off meeting was held in July, 2021
- More people joined us.
- There have been 6 ITF general meetings many more sub-group meetings held so far.
- ITF working in close collaboration with KEKB commissioning team.

International Task force for SuperKEKB upgrade

Examples of activities

- Lattice translation and repository for SuperKEKB; Optics optimization and simulations with independent codes.
- Dynamic aperture optimization, new optics design.
- Beam-beam simulation, impedance calculation, instability theories.
- Deep discussions on the simulation results and new ideas.
- Proposed many machine study items and discussion on the results.

		— In	iternational Task For	ce membe	ers	0001/7/07	
International members			KEK ACCL members		Belle II members	2021/1/21	BPO members
Maria Enrica Biagini	INFN]	Mika Maszawa (Chair)	SKEKB	Hiroyuki Nakayama	Belle II	Masanori Yamaud
Georg Hoffstaetter	Cornell	1	Yukiyoshi Ohnishi	SKEKB	Francesco Forti	Belle II	Tadashi Koseki
Evgeny Levichev	BINP	1	Akio Morita	SKEKB			Makoto Tobiyama
Mark Palmer	BNL	1	Hiroshi Sugimoto	SKEKB			Hirovasu Ego
Yunhai Cai	SLAC	1	Renjun Yang	SKEKB			IKVO Snipata
Rogelio Tomas	CERN	1	Haruyo Koiso	SKEKB			Mike Meeuzow
Pantaleo Raimondi	ESRF	1	Yoshihiro Funakoshi	SKEKB			IVIIKa IVIdSUZAW
Katsunobu Oide	CERNKEK	1	Tsukasa Miyajima	SKEKB			
		•	Kazuhito Ohmi	SKEKB			
			Demin Zhou	SKEKB			
			Kentaro Harada	KEK-PF	1		

You are welcome to join us!

3PO members			
Masanori Yamauchi	KEK		
Fadashi Koseki	ACCL	Naohito Saito	IPNS
Makoto Tobiyama	SKEKB	Shoji Uno	Belle II
Hiroyasu Ego	SKEKB	Yutaka Ushiroda	Belle II
vyo Shibata	SKEKB	Toru lijima	Belle II
Mika Masuzawa 🔔	SKEKB	Kodai Matsuoka	Belle II

We will continue to make every efforts to improve SuperKEKB performance toward design goal.

Thank you for your attention.

Spare slides

B) Layout of LINAC, BT, Injection to MR

e+ beam injects into LER via DR:

The injection BG is not affected very much by the condition upstream the DR.

e- beam directly injects into HER:

The injeciton BG is directly affected by the condition of RF-gun, LINAC, and BT.

直接入射路ラティス設計の進捗状況

Large beam loss event (LER) March 23rd 2022

D06V1 collimator was damaged.

What is cause of large beam loss?

- Usual beam instability may not be the cause.
 - Too fast beam loss (< 3 turns)
- Dipole oscillation?
 - Almost no dipole beam oscillation was observed before previous turns of beam loss by BOR (bunch oscillation recorder).
 - In some cases, some dipole oscillation was observed. Before the dipole oscillations are observed by BOR, the oscillated beam particles are lost?
- Energy loss?
 - Beam loss is not significant at horizontal collimators where the dispersion is large.
 - No large orbit change was observed at Libera monitor where the dispersion is large.
 - In the simulations on collision with dust particles, the main cause of beam loss is energy loss.
- Beam size blowup?
 - Beam size blowup has not been measured with fast beam size monitor yet.
 - In the simulations on collision with dust particles, the beam size blowup due to multiple scattering is small.
- Dipole kick associated with some vacuum arc events in beam pipe? (by T. Abe)
 - Damaged collimator head can be the source of the event.
- Observation Tools
 - More number of BORs will be helpful to understand the cause.
 - Identifying where the beam loss starts is helpful to understand the phenomena.

Catastrophic beam loss abort events in 2021b

(which caused QCS quenches)

4/19 (MO) Owl	1:07	QCS quench QC1LE	HER 820 mA	← 1 turn=10us
5/10 (MO) Day	14:26	QCS quench QC1LP, QC1RP	LER 910 mA	
5/14 (FR) Owl	0:35	QCS quench QC1RP	LER 840 mA LER kicker trouble	
5/23 (SU) Owl	8:24	QCS quench QC1LP, QC1RP	<u>LER</u> 840 mA	Da se
5/28 (FR) Owl	3:21	QCS quench QC1RP	LER 840 mA	dia sa
6/2 (WE) Swing	20:13	QCS quench QC1LP, QC1RP	LER 840 mA	
6/6 (SU) Day	16:06	QCS quench QC1LP, QC1RP	LER 840 mA	

April ~ June 2021

Most of them are caused by huge beam loss in LER, several turns before the abort.

Dangerous for Belle II inner sensors. In some cases, diamonds on IP beam pipes saw >1500mrad (saturated) and PXD was damaged

This event caused a severe damage on LER D2V1 collimator

BOR/BCM

Nano-beam collision scheme

"Fireball" hypothesis (by T. Abe-san)

From abort meeting on May 31th, 2022

When a tiny particle is heated up by the beam-induced field and then touches some metal surface, it generates plasma and causes vacuum arc, which could interact with beam particles. 14

Machine parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	А	
Number of bunches	2,5	500		
Bunch Current	1.44	1.04	mA	
Circumference	3,01	6.315	m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	8	33	mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξ _Y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x3	8×10 ³⁵		

SuperKEKB Beam Instrmentation

Noise in the HER BxB FB

2nd harmonics of this signal (254kHz) affected the HER BxB FB

Specific luminosity & beam-beam parameters

Machine Parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
1	3.6	2.6	А	
Number of bunches	2,5	00		
Bunch Current	1.44	1.04	mA	
Circumference	3,016	5.315	m	
ε _× /ε _γ	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	035	cm ⁻² s ⁻¹	

LER Optics: 2022-06-07_14:24:58.091_Tune

Convergence(-----) = .000000

Ring Tune IR Normal Cell Nikko Oho Chromaticity Dynamic Aperture Poincare Map

SuperKEKB Transverse FB systems

2022/June/12th

2022/June/12th

LER : Optics Measurement

Integrated luminosity	Recorded	Date	Delivered	Date
Shift (pb ⁻¹)	958.1	April 24, swing, 2022	1035.9	April 22, swing, 2022
1 days (fb ⁻¹)	2.503	April 22, 2022	2.760	April 22, 2022
7 days (fb ⁻¹)	15.001	April 18 - April 24, 2022	16.599	April 18 - April 24, 2022

Operation statistics for three years

2020 a/b

The crab waist was adopted for the first time. Beta squeezing from 1 mm down to 0.8 mm.

Beta squeezing from 2 mm down to 1 mm (after intermediate steps of 1.5 mm and 1.2 mm)

Many optics trials, carbon head collimator (LER)

Energy scan increases "machine tuning".

Bunch length (measurement by streak camera; H. Ikeda)

Vacuum Scrubbing - LER

Vacuum Scrubbing - HER

Beam abort weekly count for 2022b

- HER "mu-1" mode oscillation
- HER fast beam loss
- others

In 2022b, there were several "bad injection" days and much more injection-related aborts were observed than 2022a
 To reduce injection-aborts, relaxing diamond threshold was

discussed (not changed yet)

- QCS quench x 3 times, due to LER fast beam loss

w/ crab waist $\beta y^* = 0.27$ mm

Figure 4.28: Dynamic aperture in the LER crab-waist lattice without beam-beam effect. Initial ratio of the vertical to the horizontal amplitude is 0.27 %. (a) $K_2 = 0$ $[1/m^2]$, (b) $K_2 = 11 [1/m^2]$.

2022/June/12th

Vertical collimators setting (LER)

- Setting in physics run
 - D06V1: primary collimator
 - Most tightly closed
 - Suppressing injection BG
 - D02V1: second collimator
 - Very important for reducing BG
 - D06V2, D03V1
 - backup: not so tightly closed
- D06V1 collimator is planned to be replaced by nonlinear collimator(NLC).
 - $-k_{\perp}\beta_{y}$ of nonlinear collimator will be much less than usual collimators.

Scheme of NLC

2

Requirements for the NLC optics:

- Large $\beta_y = \beta_{ys}$ at the (skew) sextupole.
 - $-\beta_y = \beta_{yc}$ at the collimator: $\sqrt{\beta_{yc}\beta_{ys}} \approx 1.7 \times L_{sc}$
- A (skew) sextupole pair connected by a -I transformation.
- No dispersion at the sextupoles and the collimator.
- ≈ 0.25 vertical phase advance between the sexts and the IP.

Five sections of wigglers are removed!

Here the collimator is placed right before the center quad (ON3OP). If the quad is split into two pieces, the collimator can be placed in the middle of them. June 17, 2021 K. Oide

Beam kick by skew-sextupole

• Multipole expansion

$$\phi(r,\theta) = \sum_{n=1}^{\infty} (a_n r^n \cos(n\theta) + b_n r^n \sin(n\theta))$$

$$\phi_{3,s}(r,\theta) = a_3 r^3 \cos(3\theta) = a_3 (x^3 - 3xy^2) \text{ (skew-sextupole)}$$

• Magnetic field of skew-sextupole

$$B_x = -\frac{\partial \phi}{\partial x} = -3a_3(x^2 - y^2), B_y = -\frac{\partial \phi}{\partial y} = 6a_3xy$$

- SK_2 $SK_2 = \frac{L}{B\rho} \frac{\partial^2 B_x}{\partial y^2} = \frac{L}{B\rho} \frac{\partial^2 B_x}{\partial a_3}$ V-kick does not depend on sign of v-position. Only one side vertical collimator is needed (top or bottom). Horizontal offset reduces v-kick.
- Beam kick by skew-sextupole

A particle with both x and y offset receives horizontal kick also.

59

$$\Delta p_y = \frac{B_x L}{B\rho} = \frac{SK_2}{2}(y^2 - x^2), \ \Delta p_x = \frac{B_y L}{B\rho} = SK_2 xy$$

NLC uses nonlinear kick of skew sextupoles. βy^* at the skew sextupoles is set to be large. \rightarrow Required collimation capability can be obtained with a wide aperture of collimator.

Collimator settings ($\beta y^*=$ 1mm case)

 $\beta_y^* = 1 \text{ mm}$

without NLC	Dec. 22 nd 2021			with NLC			
	β _y [m]	Collimator Half aperture [mm]	β _y k _y [V/C]		β _γ [m]	Collimator Half aperture [mm]	β _y k _y [V/C]
D06V1	67.3	3.107	1.248e+16	NLC	2.9	10.0	1.036e+14
D06V2	20.6	2.677	5.607e+15	D06V2	20.6	2.677	5.607e+15
D03V1	17.0	7.9855	8.597e+14	D03V1	17.0	7.9855	8.597e+14
D02V1	11.9	1.069	1.332e+16	D02V1	11.9	1.069	1.332e+16

• With NLC, the impedance (β y * ky) from D06V1 can be reduced by an order of 2.

Impedance Model and Predictions

In case of two vertical collimators in use

- Benefit of nonlinear collimator
 - We can decrease transverse ring impedance
 - We can raise the threshold of TMCI. But the threshold of TMCI may be higher than design bunch current of 1.44mA with $\beta y^*=0.6mm$ optics in use of 2 collimators.
 - What about QCS chamber impedance with β y*=0.6mm optics?
 - The single-beam blowup of -1 mode (single bunch effect) is observed at >~1mA(1.2mA) with present βy*=1mm optics and this blowup is suppressed by opening D06V1 collimator. This means that the blowup is also suppressed by using NLC.
 - In high bunch current collision study showed that the LER blowup is well suppressed in the collision condition and there was no significant change when we opened D06V1 collimator. Then we couldn't show that using NLC will directly bring higher luminosity.
 - What about situation with higher impedance with lower βy^* ? (experiences with carbon head collimator)
 - The resistive wall impedance of D06V1 collimator can be reduced drastically. But its effect to the instability is small.
 - We can use one more vertical collimator seriously to suppress beam background.
 - Andrii's simulation shows that BG can be significantly reduced with β y*=0.6mm optics using NLC.
 - NLC collimator is more irrefrangible?
 - Beam hit
 - If an abnormal beam comes from outside of skew-sextupole pair, the (nearly) same amount of beam
 particles hit the NLC collimator as the case of usual collimator.
 - Discharge at NLC collimator
 - Effect of damages surface of collimator head on beam

Bad experience with carbon head collimator

TMCI rough estimation on impedance study ($\beta_y^*=1.0$ mm)

D06V1 (C, 60 mm) survey (2020-12-02)

The maximum bunch current is ~1.04 mA/bunch limited by an instability in the collimator settings.

Collimator	β _y [m]	aperture [mm]	k⊤ [V/pC/m] ^{a)}	
D06V1	67.3	±2.0	841 ^{b)} +	 552 ^{c)}
D06V2	20.6	±3	237	
D03V1	17	±3	237	
D02V1	13.9	±3	237	

 $I_{\rm h th} \approx 0.99 \text{ mA/bunch} \leftarrow (1.49 \text{ mA/bunch})$

<i>ı</i> _	$C_1 f_{\rm s} E/e$		
b,th –	$\sum_{i} \beta_{i} k_{\mathrm{T},i}(\sigma_{z})$		

[Handbook of Accelerator Physics and Engineering 3rd Printing (2009)]
C₁ ≈ 8, f_s = 2.13 [kHz], *E/e* = 4 [GV]
a) Kick factors are calculated by GdfidL (σ_z: 6 mm).
b) including lossy metal (GdfidL 2020-07-23, T. Ishibashi)

c) loss-free (GdfidL 2013-10-15, T. Ishibashi)

This study is conducted taking the beam orbit and the D06V1, D03V1 vertical offset into consideration.

B-PosY [mm]	V-offset [mm]
D06V1: 0.44	D06V1: -0.3
D06V2: 0.22	D06V2: 0
D03V1: 0.04	D03V1: 0.4
D02V1: 0.16	D02V1:0

D06V2 (Ta, 10 mm) survey (2020-12-04)

We were able to accumulate ~1.5 mA/bunch at least. $I_{b,th} = ~1.55 \text{ mA/bunch}$ (with $C_1 = 4\pi$) However, we were not able to measure the vertical tune accurately because the main peak and side band were overlapped.

Collimator	β _y [m]	aperture [mm]	k т [V/pC/m] а)	_	
D06V1	67.3	±4.0	249 b) 🔸		205 ^{c)}
D06V2	20.6	±1.8	490		
D03V1	17	±2.0	430		
D02V1	13.9	±1.0	1287		

 $I_{\rm b,th} \approx 1.31 \text{ mA/bunch}$

Beam Size at High Bunch Current Study

We gave up high bunch current collision study due to unexpected blowup in LER.

Transverse coupled bunch instability due to resistive wall impedance (LER)

	β y*=1mm, I _{tot} =600mA					β y*=0.6mm , I _{tot} =3600mA			
	β _y [m]	Collimator Half aperture [mm]	Length[mm]	Growth Time [ms]		β _γ [m]	Collimator Half aperture [mm]	Length[mm]	Growth Time [ms]
D06V1	67.3	3.34	4	234		67.3(2.9*)	2.2(5.48*)	4	11.1(3997*)
D06V2	20.6	3.08	4	600		20.6	1.89	4	23.1
D03V1	17	8.0	10	5104		17	5.65	10	299.7
D02V1	11.9	1.0	10	14		16.5	0.89	10	1.19
Normal chambers	19.0	R=45	~3016m	8.85		19.0	R=45	~3016m	1.48
					Verti V/H	cal coupling (%):	1.000		
Total (Calc.)				5.2	QC1 QC1 #	R name with max betay Q R vertical aperture (mm) of sigma:	13.500 76.225		0.61(0.64*)
Mes.				3.6	# D02	of sigma: V1_bottom (mm)	43.791 -1.182		
2022/3/28					# D03' # D06' # D06' # D06' # D06'	of sigma: v1_top (mm) of sigma: v1_bottom (mm) of sigma: v2_top (mm) of sigma: v2_bottom (mm) of sigma: v1_top (mm) of sigma: v1_top (mm) of sigma: v1_bottom (mm)	54.133 7.980 305.964 -7.991 306.397 2.741 95.446 -2.613 90.997 3.610 69.459 -2.604	21/12/22	*) w/ NLC