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Abstract 
The KEK e-/e+ LINAC supplies electron beams to 

SuperKEKB HER, PF and PF-AR, and positron beams to 
SuperKEKB LER. In addition to conventional manual tun-
ing based on beam physics and operational experience, we 
also employ machine learning for beam tuning. In this pa-
per, we report on beam diagnostics, data acquisition and 
analysis, and beam tuning using machine learning. 

Beam tuning using machine learning has proven to be 
highly effective for increasing positron beam charge and 
reducing beam emittance. The parameters for these tunings 
are determined based on beam physics and operational ex-
perience, enabling efficient and rapid adjustments. How-
ever, it is not always possible to determine the optimal pa-
rameters. In beam tuning using machine learning, the 
choice of parameters to be optimized is critically important. 
While it is possible to infer key parameters that contribute 
to beam tuning and beam stability from beam physics mod-
els, it is not straightforward to examine all accelerator pa-
rameters or to evaluate the magnitude of their influence. 
Furthermore, identifying the factors that compromise beam 
stability remains a significant challenge. 

To address this issue, we are attempting to analyze the 
data using explainable AI (XAI) techniques in order to ex-
tract the most important parameters affecting the beam. In 
this paper, we report an example of extracting beam-tuning 
parameters from large datasets. 

KEK E-/E+ LINAC 

 
Figure 1: Layout of the KEK e-/e+ LINAC. 

The KEK e-/e+ LINAC (the LINAC) serves as the com-
mon injector for four accelerators, with beam modes pre-
pared according to the receiving accelerator. The beam rep-
etition rate is 50 Hz, and the allocation of beam modes is 
adjusted in response to requests from the downstream ac-
celerators. By utilizing the event timing system [1] for 
pulse-by-pulse control, the beam charge, energy, and optics 
are adjusted. 

Figure 1 shows a schematic layout of the LINAC. The 
LINAC is equipped with two electron guns (a thermionic 
gun and a photocathode RF gun [2]) and 226 accelerating 
structures, with 61 klystrons used to supply RF to these 
components. The beam energy is adjusted according to the 
target accelerator; for HER injection the beam is acceler-
ated up to 7 GeV. At the klystron and SLED (pulse com-
pressor) outputs and at the entrances of the accelerating 
structures, the phase and amplitude of the forward (input) 
and reflected RF are measured by RF monitors [3]; in total, 
65 RF monitors are installed across the injector. 

 In the LINAC, a total of about 450 DC quadrupole 
magnets, DC steering magnets, and bending magnets are 
installed. Since the beam energy varies depending on the 
beam mode, 46 pulsed quadrupole magnets, 73 pulsed 
steering magnets [4], and 4 pulsed bending magnets for 
beam switching are also installed to provide the optimal 
optics for each mode. 

The LINAC is equipped with approximately 100 
stripline-type beam position monitors (BPMs), which can 
be read out with a resolution better than 7 mm [5], and all 
BPM data are synchronized with the beam. In addition, 
about 20 high-precision beam profile monitors capable of 
beam-synchronized measurements [6] and about 60 older 
monitors for visual inspection are installed. Furthermore, a 
synchrotron radiation monitor is installed in the J-ARC, en-
abling non-destructive measurement of the energy spread. 

DATA ARCHIVING SYSTEM 
Almost all the equipment in the injector is controlled via 

EPICS [7]. Data archiving is carried out in two ways: (1) 
raw data saved for every beam shot, and (2) sampled data 
stored through the ArchiverAppliance [8] either periodi-
cally or when device settings are changed. 

The shot-by-shot data consist of BPMs, RF monitors, 
and pulsed magnets, with raw data saved in text format by 
each EPICS IOC. These data are synchronized with the 
beam because, since both the event codes corresponding to 
the beam modes distributed through the event timing sys-
tem and the shot IDs assigned to each beam shot are sim-
ultaneously recorded. These data are synchronized with the 
beam, as they are simultaneously recorded with the event 
codes corresponding to the beam mode distributed via the 
event timing system and the shot IDs assigned to each 
beam shot. Such data can be extracted as beam-synchro-
nized datasets for any monitor, beam mode, and specified 
time. Since there are about 2000 parameters in the syn-
chronized data, outputting long-term (several days or 
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more) synchronized data from the raw files requires con-
siderable time. This makes it unsuitable for long-term data 
analysis with machine learning. To address this, the data 
are converted into a Pandas Dataframe [9] and stored in 
table-format HDF5 [10]. In machine learning, it is not al-
ways necessary to use all parameters. In some cases, only 
the parameters considered essential are extracted, either to 
avoid using strongly correlated parameters or to prevent is-
sues such as overfitting. Using HDF5 in table format al-
lows immediate extraction of only the specified parame-
ters, reducing memory usage. 

The ArchiverAppliance collects not only beam position 
and charge but also data from nearly all devices in the ac-
celerator, ranging from vacuum levels to temperatures at 
various locations. Since the data collected by the Archiv-
erAppliance can be easily visualized by anyone through a 
web-based UI, it is extremely useful for accelerator opera-
tion. Abnormal device behaviours, parameter oscillations 
on the order of minutes, and long-term drifts over several 
months can all be checked quickly. It is also possible to 
examine correlations between multiple parameters by stud-
ying their temporal variations. However, most of these 
data are asynchronous with the beam, meaning that corre-
lations hidden within beam jitter, such as beam position 
fluctuations, cannot be identified. Moreover, since the data 
are stored on a channel-by-channel basis rather than on an 
event-by-event basis, it is necessary to extract beam-syn-
chronized data when investigating correlations with the 
beam. When many parameters are to be included in the 
analysis, creating a dataset for analysis can take a consid-
erable amount of time. 

 

BEAM TUNING WITH ML 
At the LINAC, Bayesian optimization is applied to vari-

ous beam tuning tasks, all of which have proven to be 
highly effective. Beam tuning in accelerators is particularly 
well-suited to Bayesian optimization because the parame-
ters required for tuning can be reasonably estimated based 
on beam physics and prior manual tuning experience, and 
the initial values provided are usually close to the opti-
mum. Although Bayesian optimization can encounter is-
sues such as the exploration–exploitation trade-off and in-
stability of Gaussian process models in noisy environ-
ments, we describe several examples of its successful ap-
plication in the LINAC. 

The positron beam injected into the SuperKEKB LER is 
produced by irradiating a tungsten target with a 2.9 GeV 
electron beam, and then captured and accelerated in a 
strong solenoidal magnetic field [11]. Since the positron 
yield depends on the irradiation position and profile of the 
beam, the steering magnets and quadrupole magnets up-
stream of the target are adjusted so that the captured bunch 
charge is maximized [12]. When using Bayesian optimiza-
tion, this tuning is completed within about ten minutes. The 
positron beam is accelerated up to 1.1 GeV and injected 
into the damping ring (DR) [13] to reduce its emittance. 
The electron beams injected into the target (the 1st and 2nd 
bunches) are generated by a thermionic gun, then bunched 

through two sub-harmonic bunchers, a pre-buncher, and a 
buncher, and subsequently accelerated to 58 MeV by two 
accelerating structures before being merged into the main 
beamline via a vertical pulsed bending magnet. When the 
initial conditions of the electron beam change, a drift oc-
curs in the vertical (y-direction) orbit after merging, which 
can reduce the beam transmission to the target and conse-
quently lower the charge of the generated positron beam. 
To address this, when the average positron bunch charge 
falls below a threshold, vertical orbit correction is automat-
ically performed. Figure 2 shows how the charge is main-
tained by automatic tuning.  

 
Figure 2: Example of automatic tuning with Bayesian op-
timization, showing maintained charge of the electron 
beam incident on the target and the generated positron 
beam. PY_AT_22 and PY_A1_M are pulsed magnets in-
stalled upstream and downstream of the vertical pulsed 
bending magnet, respectively, while PY_R0_01 is installed 
at the entrance of the J-ARC. 

Since the beam quality upstream of the DR does not af-
fect the beam quality downstream of the DR, and only a 
small amount of adjustment is required to restore the yield 
lost due to such drifts, these tunings are performed even 
during injection into the LER. 

At the exit of the positron capture section, both the en-
ergy spread and the beam size are large. Therefore, in the 
straight section up to the branching line toward the DR, 104 
quadrupole magnets and 51 steering magnets are installed 
at short intervals. Including the entire beam transport line 
up to the DR, there are about 200 parameters in total. It is 
difficult to accurately predict the longitudinal and trans-
verse phase-space distribution of the positron beam at the 
capture section exit through simulation, making it impos-
sible to determine the optimal optics purely by calculation. 
Thus, the magnet strengths downstream of the capture sec-
tion were divided into several tuning segments, and Bayes-
ian optimization was applied sequentially from upstream 
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so as to maximize the beam transmission efficiency. As a 
result of this tuning, for a 9 nC electron beam incident on 
the target, the charge measured just before the DR injection 
line improved from 3.3 nC to 4.0 nC [12]. 

Since low emittance beams are required for injection 
into the SuperKEKB HER/LER [14], suppressing emit-
tance growth within the LINAC is an important issue. In 
the LINAC, emittance growth is largely caused by kicks 
from wakefields when the beam passes off-center through 
the accelerating structures. Although the BPM centers are 
calibrated to coincide with the magnetic centers of the 
quadrupole magnets, offsets relative to the centers of the 
accelerating structures cannot be measured with the beam, 
and each component is subject to alignment errors. In ad-
dition, the longitudinal and transverse phase-space distri-
butions of the beam are also important, but these are ex-
tremely difficult to measure. Therefore, the beam orbit that 
suppresses emittance growth due to wakefields in the ac-
celerating structures must be determined experimentally. 

 
Figure 3: Beam size and charge before and after tuning 
with machine learning. The dashed line indicates the values 
before tuning, and the solid line indicates those after tuning. 

Emittance growth caused by deviations of the beam from 
the optimal orbit leads to an increase in beam size. To ad-
dress this, Bayesian optimization is used to determine the 
orbit that minimizes the beam size measured by the syn-
chrotron radiation (SR) monitor installed in the 
SuperKEKB HER beam transport line (BT). In this tuning, 
the way the beam passes through the hole in the target—
namely, the orbit correction from the J-ARC to the target—
proved to be effective. This is consistent with the adjust-
ments made by experienced operators when minimizing 
emittance through manual tuning. After optimization, the 
beam size is observed to be reduced (Fig. 3). Table 1 sum-
marizes the normalized emittances before and after the cor-
rection, showing that minimizing the beam size also re-
duces the emittance. Since the SR monitor allows non-in-
vasive beam measurements, it is extremely useful. At a 
beam repetition rate of 5 Hz, this tuning can also be com-
pleted in about 10 minutes. 
Table 1: Comparison of emittance at HER BT before and 
after tuning with Bayesian optimization 

 εn,x [μm] εn,y [μm] 

Before tuning 64.9±8.6 45.6±11.0 
After tuning 29.2±5.1 46.9±13.0 
 

BIG DATA ANALYSIS 
Physics-based correlation analysis 

In accelerators, many parameters are expected to be 
physically correlated, and it is important to experimentally 
verify such correlations. At the LINAC, analyses can be 
performed by combining large sets of synchronized data 
with data collected by the ArchiverAppliance. In the previ-
ous section, it was shown that emittance growth can be sup-
pressed by adjusting the beam orbit. Injection efficiency 
into the HER is also thought to be correlated with the beam 
orbit; however, it is not obvious which orbit locations in 
the injector are the most critical. 

 
Figure 4: Correlation between the electron beam position 
and the injection efficiency into the HER. The upper panels 
correspond to an upstream section of the LINAC, while the 
lower panels show the BPM located just before the positron 
target. 

To investigate this, correlations between beam positions 
measured by BPMs in the injector and the injection effi-
ciency were studied using five days of data. When param-
eters are physically correlated, clear correlations can often 
be observed by analyzing several days of data, but analyz-
ing longer-term data may obscure them owing to the inter-
play of complex factors. In practice, the analysis of data 
over periods of several months or longer requires the use 
of machine learning. Injection efficiency was obtained 
from the ArchiverAppliance, which is not linked to the 
event system; synchronization was therefore performed by 
comparing timestamps. Figure 4 shows the correlation be-
tween beam position and injection efficiency at five loca-
tions in order from upstream in the LINAC. Except for the 
LINAC end, correlation structures with injection efficiency 
can be seen at all positions; however, at locations other than 
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the BPM at the target entrance, the correlation structures 
are divided into several island-like patterns. This is consid-
ered to arise from indirect correlations, since those loca-
tions are optically connected to the regions that directly af-
fect injection efficiency. In contrast, a clear correlation is 
observed at the entrance of the target. This BPM is located 
upstream of the positron target, where the electron beam 
passes through a hole in the target. Since the optics down-
stream of the positron target are optimized to maximize 
positron transmission, the β-function for the HER electron 
beam becomes large in this region. Consequently, orbit var-
iations are also larger, and the impact of wakefields in the 
accelerating structures is expected to be more significant 
here than in other regions. It was also confirmed that the 
beam angle at the target position exhibits a clear correlation 
with the injection efficiency. This result is also consistent 
with the experimental findings in the previous section, 
where emittance growth was suppressed by orbit correc-
tion from the J-ARC to the target. At the LINAC end, no 
correlation is observed, because from the 3-sector onward 
orbit feedback is active, keeping the orbit constantly ad-
justed to the same trajectory. 

 Data analysis based on the physical background is use-
ful for identifying the parameters required for beam tuning, 
and the LINAC provides an environment that enables de-
tailed analyses. 

Analysis using Explainable AI  
Although parameters critical to beam tuning and beam 

instabilities in accelerators can be to some extent predicted 
based on physical considerations, there exist many param-
eters that simultaneously influence the beam, which im-
poses limitations on correlation analysis. Moreover, corre-
lation analysis has difficulty capturing nonlinear relation-
ships. To address this, we have begun efforts to evaluate 
beam-tuning–relevant parameters using XAI, cally SHAP. 
SHAP (SHapley Additive exPlanations) is a method that 
quantifies the contribution of each feature to a prediction 
made by a trained model, using Shapley values from coop-
erative game theory [15]. This approach allows visualiza-
tion of the influence of individual features on a single pre-
diction, as well as aggregated evaluation of global feature 
importance across the model. Because SHAP inherently 
explains situations where all features contribute simultane-
ously, it is expected to be a useful tool for accelerator op-
eration and beam physics studies. However, caution must 
be exercised since SHAP serves as a tool for model ex-
plainability, but it does not provide any guarantee of cau-
sality. For example, in the case described in the previous 
section—identifying beam orbits associated with deterio-
rated injection efficiency—beam positions measured at 
multiple BPMs exhibit multicollinearity, and directly ap-
plying such injection data into SHAP fails to provide 
meaningful results. 

Here, we present an example of analyzing correlations 
between RF and beam performance. At the LINAC, an Ax-
ion-like Particle (ALP) search experiment [16] is being 
considered during periods without injection into down-
stream rings, using the beam dump line. In this experiment, 

it is important to reduce beam losses upstream of the de-
tector in order to lower the background in the physics data. 
Due to the high beam energy, even small losses in the beam 
duct can generate a large number of secondary particles, so 
beam halo-induced losses are also a significant concern. To 
investigate the parameters contributing to background, we 
analysed about two months of post-tuning data with Ten-
sorFlow [17] and SHAP. The inputs consisted of 672 RF 
parameters (RF amplitude and phase measured at the klys-
tron, SLED, and the entrance of the accelerating structure), 
837 magnet current settings, and 661 environmental tem-
peratures. The outputs were beam transmission from the 
upstream LINAC to just before the beam dump, and signals 
from optical-fiber beam-loss monitors installed along the 
dump line. 

 

 
Figure 5: The upper panel shows the importance of RF 
parameters with respect to the beam transmission, while 
the lower panel shows their importance for the beam 
loss, expressed as the absolute SHAP values. 

 
Figure 5 shows parameters identified as important for 

beam transmission and beam loss. All high-importance pa-
rameters were RF-related, with the strongest influence 
from the upstream B-sector (KL_B*) and the downstream 
5-sector (KL_5*). The RF in the B-sector primarily affects 
the energy spread at the entrance of the J-Arc. Since colli-
mators are installed in the J-Arc, the part of the energy dis-
tribution that is collimated depends on the beam orbit (en-
ergy) and energy spread. From the 5-sector to the dump, 
several bending magnets are located, making the 5-sector 
RF important for transporting the energy-spread beam to 
the dump with minimal loss. 

From the SHAP analysis, it was predicted that increasing 
the phase of KL_B5 by about +1.5° from its operational 
setting would reduce the beam transmission by ~1% but 
substantially decrease beam loss. We therefore measured 
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the relationship between the KL_B5 phase, beam loss, and 
transmission (Fig. 6). The blue dashed line indicates the 
operational setting, while at +1.5° (red dashed line) the 
transmission decreases by about 1%, but beam losses are 
reduced nearly to the pedestal level. It is considered that 
the phase change of KL_B5 increased beam loss in the J-
ARC, causing the energy tail that had been lost in the dump 
line to be collimated by the J-ARC collimators, which in 
turn contributed significantly to the overall reduction of 
losses. 

 
Figure 6: Beam loss as a function of klystron phase and 
beam transmission efficiency up to the beam dump. 

In the LINAC, two klystrons are typically operated as a 
pair in order to equalize the acceleration of the head and 
tail of the bunch, with their phases set symmetrically 
around the crest phase. Therefore, the SHAP-based indica-
tion of adjusting the phase of a single klystron was highly 
meaningful. Nevertheless, there remain issues to be ad-
dressed in SHAP analyses. For example, in Fig. 5, klystron 
KL_DN is listed as an important parameter; however, the 
beam does not pass through the accelerating structure pow-
ered by KL_DN, which is used for energy compression in 
the DR injection line. This is in fact an irrelevant parameter 
and should have been excluded, but it likely represents a 
spurious correlation—possibly with Low Level RF acting 
as a latent variable. 

Going forward, we plan to continue advancing research 
aimed at improving and stabilizing beam quality through 
the use of SHAP, other XAI techniques, and their combi-
nation with deep learning.  

CONCLUSION 
The KEK e-/e+ LINAC supplies beams to four circular 

accelerators, providing beam conditions tailored to the re-
quirements of each. We reported on the overview of the in-
jector, the monitoring system, and data archiving. Since the 
LINAC involves many parameters and beam conditions 
that require tuning, Bayesian optimization has been ac-
tively adopted for beam adjustment, and it has been suc-
cessfully applied to tasks such as maximizing and main-
taining positron beam charge and reducing electron beam 
emittance. In addition, big data analysis is used to evaluate 
the parameters necessary for optimization. More recently, 
explainable AI (XAI) with SHAP has been introduced to 
extract parameters effective for tuning and to estimate 
those contributing to beam stability. As an example, we 

presented the use of SHAP to identify RF parameters im-
portant for reducing beam losses. 
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