
# Inter-Generational Compatibility Study of MRF Event Timing Modules

```
Di Wang (di.wang@kek.jp)
LINAC Control Group
KEK
```

9/24/2025 **1** 



## Current Timing System




- The LINAC provides beam simultaneously to four storage rings at 50 Hz
- Timing system must ensure:
  - Stable synchronization with 50 Hz AC line
  - Precise Pulse-to-Pulse Modulation (PPM) every 20 ms
  - Flexible RF bucket selection across injector and multi rings
- The current timing system is highly complex
  - 3 EVGs are cascaded at main station to follow 44.1 Hz BSC and 50 Hz AC line
  - Various EVR types are used (MRF VME/PXI EVR, Virtex6-based embedded EVR, EVO/EVE)



# The Timing System Upgrade

- EVG & EVR from MRF company
- KEK LINAC relies on a large, distributed timing system with over 100 EVRs (mostly VME based) since 2008.
- The VME platform is stable but becoming obsolete; key components like the MVME5500/MVME6100 CPU are being discontinued.
- MRF 230 series EVG & EVR are marked as NLA; migration to 300 series is mandatory
- We decide to migrate our timing system from VME to the modern MicroTCA standard.









# Two Migration Strategy

VME-EVG-230



MTCA-EVR-300



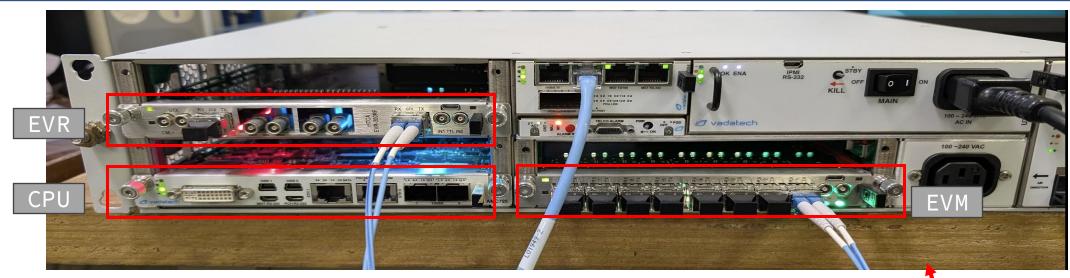
• Goal: fully non-VME timing system

- Chosen approach: replace EVG first
  - Remove VME from the "heart" of the timing system
  - Deploy the latest EVG software stack from the start
  - Unlock advanced functionality of the MRF 300 series
  - Simplify subsequent EVR migration and system expansion
- <u>Verification of compatibility</u>
   <u>between MTCA-EVM-300 of VME-EVR-230 is critical</u>

MTCA-EVM-300



VME-EVR-230




Path B: Replace EVG first

Path A: Replace EVR first



### Experimental Setup

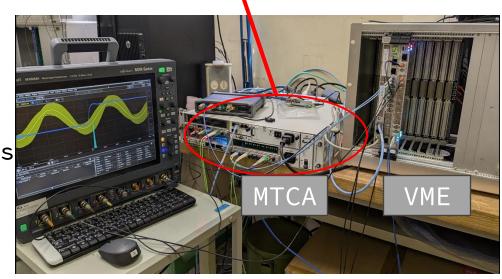


VadaTech Chassis: VT814

VadaTech MCH: UTC004

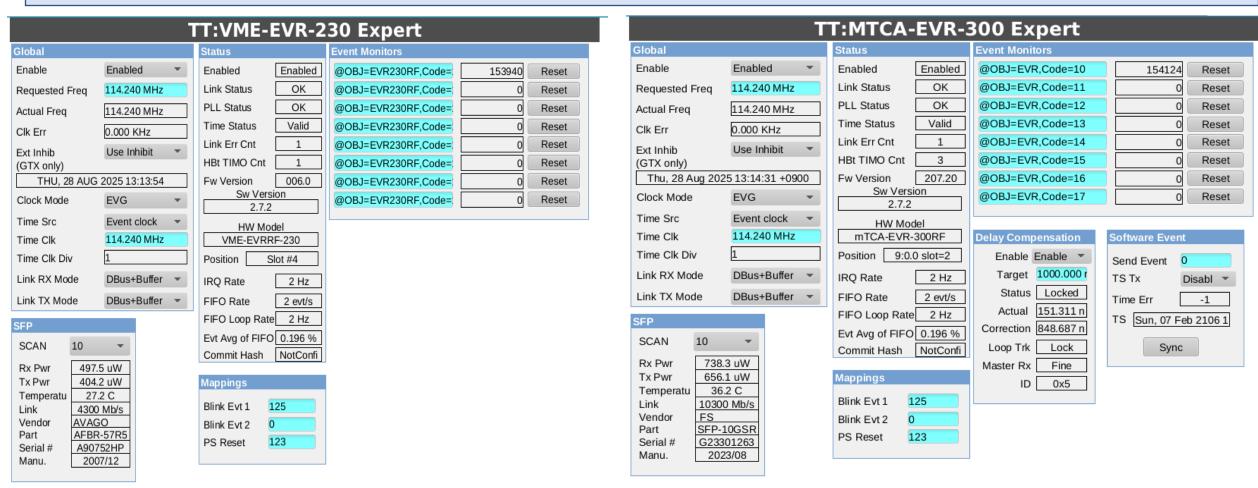
VadaTech CPU: AMC725

AlmaLinux 9


• EPICS 7 & mrfioc2 (EPICS module) on NFS

Single source code -> Linux & VxWroks binaries

• MRF MTCA-EVM-300, MRF MTCA-EVR-300RF, VME-EVR-300, VME-EVR-230RF, PXI-EVR-230


• Keysight Oscilloscope (2.5 GHz, 16 GSa/s)

Picoscope 4424A & Raspberry Pi 5 (details later)

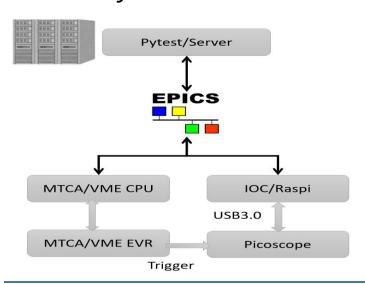




#### Control Interface



OPI for VME-EVR-230


OPI for MTCA-EVR-300

Keep EPICS PV naming and OPI consistency for various of form factors

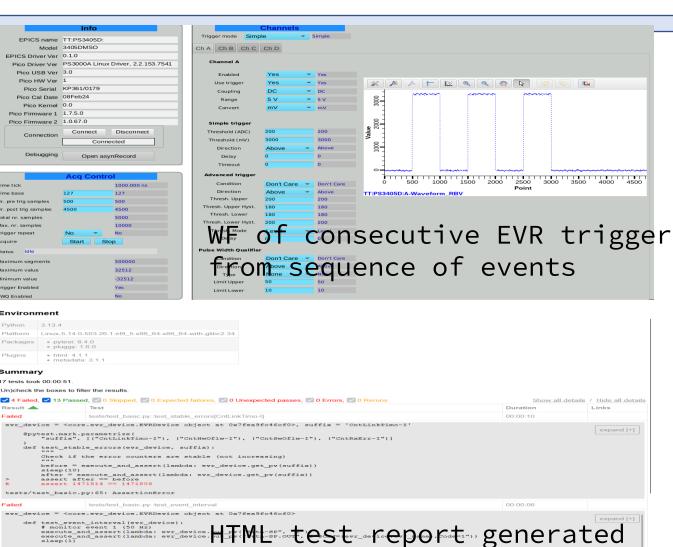


#### **Basic Function Verification**

- Common functions for EVR of different form factors
  - EVR link/TS/SFP status, Pulse-Gen, IO mapping, Output width/polarity
- A pytest-based framework is used to automate the verification
  - Automatically sets up EVR and read status/trigger waveform back
  - Allows flexible configuration through YAML
  - GitLab CI automation and HTML test report generation
  - Works for VME/PXI/MTCA EVRs
- Picoscope connects to Raspberry Pi with USB (both portable)
  - AsynPortDriver based epics driver developed for Picoscope






```
ioc_exe: "/path/to/epics/modules/mrfioc2/bin/linux-x86_64/mrf"
ioc_cmd: "evr300.cmd"
cmd_path: "/path/to/epics/ioc/mrf300-test-ioc/mtca"
 hardware: "MTCA-EVR-300RF"
 use_scope: "YES'
 scope_prefix: "TT:PS3405D:"
 scope_port: "FPUV1"
 scope_channel: "A"
 evr_name: "EVR"
 use_pva: "NO"
/me-evr-230-default:
 prefix: "TT:VME-EVR-230:"
 ioc_start: "NO"
 hardware: "VME-EVR-230"
                           YAML config
 use_scope: "YES"
 scope_prefix: "TT:PS3405D:"
 scope_port: "FP1"
 scope_channel: "B"
 evr_name: "EVR230"
 use_pva: "NO"
```



#### Basic Function Verification



AsynPortDriver-based IOC on Pi



monitor (Trystactar-1") by GitLab pipeline

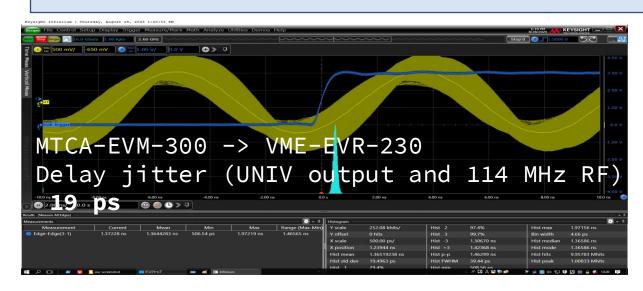
9/24/2025

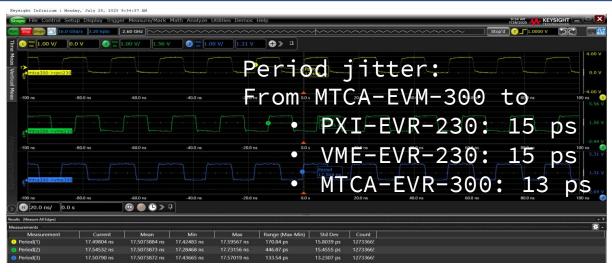
EPICS Driver Ver 0.1.0

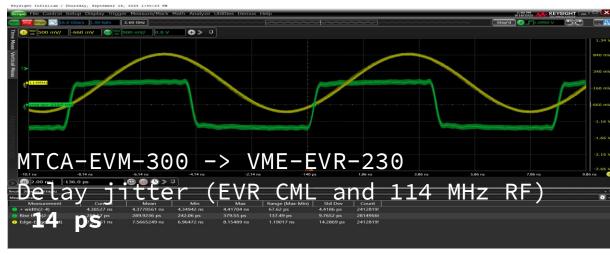
Pico USB Ver 3.0

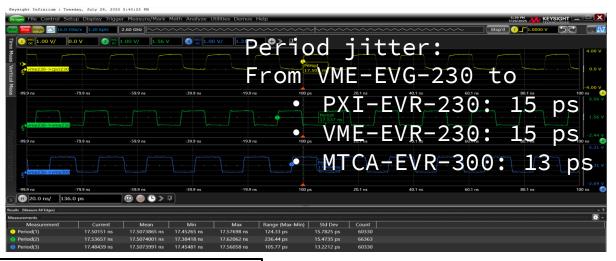
Pico Kernel 0.0

Time tick


Nr. pre trig samples


Summary


17 tests took 00:00:51




# Timing Performance









SuperKEKB MR Requirement: <30 ps</pre>



# Evt Code/Dbuf Long Term Stability

- <u>Because injection pattern switches frequently, we have</u> <u>occasionally observed missing event codes received by EVRs</u> / data lost from data buffer
- Python script
  - Simulates operation and calculates injection pattern Generates event code/delay waveform Applies change to MTCA EVM IOC
  - Daily crontab to verify whether EVR received event code/delay is matching
- VME EVR IOC:
  - Add `EvtLog` iocsh function from mrfioc2, allows changing:
    - NFS directory used to save log files
    - `epicsRingPointer` buffer size
    - format of log file (ascii or binary)
  - Log files hierarchy: EVR-NAME/YEAR/MONTH/DAY/HOUR.log
  - Log data format: `code-second.nanosecond`
- Similarly, 50 Hz data buffer is also logged and verified
- No code mismatch or timing violation are observed

```
=== Start Event Sequence Checker ===
Start processing EVR230RF/2025/09/15/00.log
Initial Phase: Found event 38: 38-1757861999.560603781
Start processing EVR230RF/2025/09/15/01.log
Start processing EVR230RF/2025/09/15/02.log
Start processing EVR230RF/2025/09/15/03.log
Start processing EVR230RF/2025/09/15/04.log
Start processing EVR230RF/2025/09/15/05.log
Start processing EVR230RF/2025/09/15/06.log
Start processing EVR230RF/2025/09/15/07.log
Start processing EVR230RF/2025/09/15/08.log
Start processing EVR230RF/2025/09/15/09.log
Start processing EVR230RF/2025/09/15/10.log
Start processing EVR230RF/2025/09/15/11.log
Start processing EVR230RF/2025/09/15/12.log
Start processing EVR230RF/2025/09/15/13.log
Start processing EVR230RF/2025/09/15/14.log
Start processing EVR230RF/2025/09/15/15.log
Start processing EVR230RF/2025/09/15/16.log
Start processing EVR230RF/2025/09/15/17.log
Start processing EVR230RF/2025/09/15/18.log
Start processing EVR230RF/2025/09/15/19.log
Start processing EVR230RF/2025/09/15/20.log
Start processing EVR230RF/2025/09/15/21.log
Start processing EVR230RF/2025/09/15/22.log
Start processing EVR230RF/2025/09/15/23.log
=== Event Sequence Checker Summary ===
Tick frequency: 114.24000 MHz (period ~8.753501 ns)
Sequence length: 132 events
Sequence period: 223.885373 ms
Files scanned: 24
Total events processed: 47518944
Code mismatches: 0
Timing violations: 0 (tolerance 10.0 ns
Resyncs applied: 0
```

Daily event code checking



# Summary & Future Work

- Upgrade plan
  - Goal is a fully non-VME timing system with MTCA & MRF 300 modules
  - Phased migration approach ensures safety and compatibility
- Compatibility validated
  - Event code distribution tested and basic functions confirmed
  - Jitter performance within requirements no degradation observed
  - Long term event code/data buffer transmission stability verified
- Next migration tasks
  - Replace other VME-based timing modules (TDC/RFM) with MTCA ones
  - New Linux driver for MTCA TDC/RFM modules
  - Integrate into EPICS and conduct system-level tests