MANAGEMENT OF SERVER AND NETWORK INFRASTRUCTURE AT
SuperKEKB

H. Sugimura®, F. Ito, A. Morita, T. T. Nakamura, S. Sasaki,
High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Abstract

The SuperKEKB accelerator employs an EPICS-based
control system for its operation. This paper presents the de-
sign and implementation of the core server infrastructure and
network environment that support the accelerator control
system. The servers are provisioned and managed using An-
sible, enabling infrastructure-as-code practices that ensure
idempotency, reproducibility, and maintainability across the
system.

We describe the configuration of physical and virtual
servers, the monitoring infrastructure based on Zabbix,
iDRAC, and the Elastic Stack, as well as our operational ex-
periences, including the smooth OS migration from CentOS
7 to AlmaLinux 9. The lessons learned and the benefits of
code-based infrastructure management are also discussed.

INTRODUCTION

At the SuperKEKB accelerator facility, documentation
related to computing and networking infrastructure has tra-
ditionally been maintained in the form of internal technical
notes. These records, inherited from the preceding KEKB
accelerator project, have supported the continuity of tech-
nical knowledge despite personnel changes over time. In
particular, the dedicated accelerator control network required
systematic management of configuration files for machines
running core services such as DNS, DHCP, and NTP. These
configuration files have been carefully preserved across op-
erating system upgrades, allowing seamless continuity in
system administration.

In addition to these core service servers, various user-
facing machines have been provided to support the develop-
ment of accelerator-related software tools. These systems
required the installation and maintenance of application envi-
ronments, which have been updated as needed in accordance
with changes in the underlying operating systems.

In recent years, however, modern technologies have
emerged that dramatically improve the maintainability and
reproducibility of infrastructure. One such advancement is
Infrastructure as Code (IaC), which enables system configu-
rations to be described programmatically. By adopting this
approach, server setup and configuration tasks can be per-
formed consistently by any administrator, thereby reducing
reliance on specific individuals. Ansible, a representative
tool for IaC, has been introduced in our environment to au-
tomate and accelerate server provisioning processes [1]. Its
adoption has also proven beneficial in disaster recovery sce-
narios, allowing rapid reinstallation and configuration of

* hitoshi.sugimura@kek.jp

servers from scratch following hardware failures. At Su-
perKEKB, Ansible-based automation has been employed
to deploy and manage a variety of servers essential to the
control system.

In the past, server monitoring was often performed by
manually saving and searching command-line output logs
to determine who had executed which operations on which
machines. This method has since been replaced by a more
modern and robust monitoring framework using Zabbix,
which stores monitoring data in a structured database and
provides intuitive visualization [2]. Zabbix is used primarily
for OS-level monitoring, while hardware-level monitoring
is achieved using tools provided by the server vendor. In
our system, all servers are standardized on Dell hardware,
and monitoring is performed using iDRAC (Integrated Dell
Remote Access Controller), which enables centralized man-
agement and hardware status tracking.

For network monitoring, we have adopted the Elastic Stack
to collect, store, and analyze communication logs [3]. These
data are visualized using Grafana and Kibana, enabling com-
prehensive visibility into network activity and facilitating
efficient troubleshooting [4, 5].

SYSTEM OVERVIEW

The server infrastructure of the SuperKEKB accelera-
tor can be broadly categorized into three types: servers
for core infrastructure services, user-facing servers, and
administrator-exclusive servers. Each of these three server
types is deployed across two network layers—the accelerator
control network and the higher-level institutional network. In
particular, the core service servers are configured with redun-
dancy by deploying two servers per network layer, resulting
in a total of four core servers in operation. These servers
host essential services directly (i.e., without containeriza-
tion or virtualization layers). The operating system selected
for these servers is AlmaLinux 9 [6]. Previously, CentOS
7 had been used [7]; however, with its end of life (EOL),
AlmaLinux was chosen as a binary-compatible alternative
to RHEL.

User-facing servers and administrator-exclusive servers
are operated as virtual machines (VMs). The physical host
machines also run AlmalLinux 9 and utilize KVM (Kernel-
based Virtual Machine) for virtualization, hosting multi-
ple VMs on each server. This virtualization approach was
adopted in response to recent advances in server hardware
capabilities, which now allow a single physical server to
reliably support multiple VMs. Currently, over twenty VMs
are in operation across the system. VM management was
performed using both the virsh command-line interface and



Cockpit [8], a web-based server administration interface de-
veloped by Red Hat. The current system consists of seven
host machines, with computational loads distributed among
them to balance performance and resource utilization.

Regarding network configuration, all servers within the
accelerator control network are interconnected via a 10 GbE
network. In contrast, servers on the KEK internal network
are connected via a 1 GbE network. The accelerator con-
trol system is built on EPICS, which operates reliably over
the 10 GbE infrastructure [9]. Most user access, however,
occurs from office spaces via the internal network, where
only 1 GbE connectivity is available. Nevertheless, because
user activities are primarily limited to data retrieval, this
bandwidth is generally sufficient and does not pose a risk to
accelerator operations.

An overview of the current system architecture, including
the network layout and server classifications, is illustrated
in Fig. 1.

KEK internal network

User Server Admin Servers
Core Servers VM VM
Host Server

Firewall

|

accelerator control network

Core Servers u User Servers
VM

Figure 1: Architecture of server and network.

U Admin Servers
VM
Host Servers

SERVER PROVISIONING WITH ANSIBLE

A dedicated control server was prepared to execute
Ansible playbooks, from which the provisioning of all
servers—including VMs, physical host machines, and core
infrastructure servers—was carried out. In order for the con-
trol server to connect to target machines via SSH, all servers
were preconfigured to allow access through the appropriate
SSH ports. Additionally, since public key authentication was
used, it was necessary to pre-distribute the corresponding
public keys to each target server. As Ansible is implemented
in Python, the necessary Python environment was also set
up on the control server.

Each server type has a corresponding Ansible playbook
that defines the provisioning steps. These playbooks, along

with their associated inventory files, are placed directly
within the top-level directories corresponding to each server
group, namely vm_server_setup, core_server_setup, and
user_server_setup. This structure allows administrators to
execute group-specific provisioning in a modular and self-
contained manner, using the appropriate combination of
playbooks, inventory, and roles. Within each directory, roles
are further categorized by service type (e.g., LDAP, DHCP,
proxy, etc.). The directory structure used to organize the An-
sible playbooks, roles, and inventory files is shown in Fig. 2.
This modular structure allows administrators to selectively
apply or update specific roles without reapplying the entire
configuration. In addition to server-side configuration, Ansi-
ble also provisions basic network settings such as hostname,
IP address assignment, and DNS resolution, contributing to
the consistent integration of the servers into the accelerator
control network.

The Ansible configuration codebase (including playbooks,
roles, and inventory files) is maintained in a GitLab repos-
itory. Each administrator pulls the latest version from the
repository into their local working directory when executing
a playbook. Since administrators also serve as developers,
any updates or newly created roles are committed and pushed
back to the shared repository, ensuring collaborative devel-
opment and version control.

—— commons

F— roles

L— vars

— core server setup
— group vars
— host vars

— roles

— inventory.ini
L— playbook.yml
— user_ server setup
— group_vars
— host _vars

— inventory.ini
L— playbook.yml
— vm server setup
— group vars
— host vars

— roles

— inventory.ini
L— playbook.yml

Figure 2: Directory structure of the Ansible-based pro-
visioning system. Common roles and shared variables
are maintained under commons/, while server-type-
specific playbooks, inventories, and roles are placed
in vm_server_setup/, core_server_setup/, and
user_server_setup/. The file playbook.yml repre-
sents a typical playbook, although in practice multiple
playbooks are defined for individual servers within each
directory.



MONITORING INFRASTRUCTURE

Multiple tools are employed to monitor the server infras-
tructure at different levels.
* OS-level monitoring using Zabbix
» Hardware-level monitoring via iDRAC
» Network traffic monitoring and visualization using Elas-
tic Stack and Grafana/Kibana

Zabbix

A dedicated VM has been provisioned to host the Zab-
bix server, which is responsible for operating system—level
monitoring. The Zabbix agent is installed on each VM and
physical host to periodically collect various system metrics.
When abnormal conditions are detected—such as resource
exhaustion or service failure—email alerts are automatically
triggered. The collected time-series data are also visualized
using Grafana for easier interpretation and trend analysis.

iDRAC

iDRAC is a built-in hardware management interface pro-
vided with Dell servers. It enables remote monitoring of
critical hardware components such as power supply units,
memory modules, CPUs, and storage devices. In the event
of a hardware fault, iDRAC sends alerts via email or SNMP
traps, allowing for prompt detection and response.

Elastic Stack

For network-level monitoring, the Elastic Stack is em-
ployed in combination with Grafana and Kibana for visual-
ization. A dedicated VM is set up to host the Elastic Stack
components, which collect and index network communica-
tion logs. These logs are then visualized to assist in perfor-
mance monitoring, troubleshooting, and usage auditing.

OPERATIONAL EXPERIENCES

In the summer of 2023, the operating system across our
server infrastructure was upgraded from CentOS 7 to Alma-
Linux 9. Although the overall system architecture remained
unchanged, some packages that had previously been avail-
able in the CentOS 7 repositories were no longer included
in AlmaLinux 9. As a result, additional effort was required
to identify and locate alternative sources for these packages.

A representative example was OpenLDAP, which had
been deprecated in RHEL 9 and its derivatives. To continue
using it, we obtained the necessary packages from the EPEL

(Extra Packages for Enterprise Linux) repository. While
this repository is relatively well-known and easy to find,
the availability of similar resources in the future remains
uncertain.

Despite such issues, the upgrade process was carried out
smoothly, largely due to the use of Ansible for the majority
of system configuration tasks.

One of the remaining operational challenges concerns
the eventual EOL of specific applications. While a smooth
migration path is ideal, it may initially be necessary to per-
form manual installations via the command line during early
evaluation and testing phases. Once a stable configuration
is confirmed, the installation and configuration procedures
can be incorporated into Ansible playbooks to ensure repro-
ducibility and consistency.

CONCLUSION

By adopting Ansible for server provisioning, we have
developed and maintained a shared codebase within a multi-
person team. This approach has ensured idempotency, allow-
ing any administrator to perform consistent and reproducible
system setups. As a result, even in cases where provisioning
fails or new servers are introduced, the environment can be
rebuilt quickly and reliably.

Furthermore, the codification of system configurations
facilitated a relatively smooth upgrade process during the
transition from CentOS 7 to AlmaLinux 9. For infrastructure
monitoring, we have deployed tools such as Zabbix and
iDRAC, enabling prompt detection of system abnormalities
and contributing to the overall stability and maintainability
of the control environment.

REFERENCES

[1] Ansible Documentation, https://docs.ansible.com/

[2] Zabbix Documentation,
documentation

https://www.zabbix.com/

[3] Elastic Stack Documentation, https://www.elastic.co/
guide/index.html

[4] Grafana Documentation, https://grafana.com/docs/
[5] Kibana, https://www.elastic.co/kibana

[6] AlmaLinux OS Foundation, https://almalinux.org
[7] CentOS Project, https://www.centos.org

[8] Cockpit Project, https://cockpit-project.org

[9] EPICS: Experimental Physics and Industrial Control System,
https://epics-controls.org



