Abstract

In the KEKB injector linac, the two-bunch acceleration scheme has been used for doubling the positron injection rate to the KEKB Low-Energy-Ring (LER). In this operation mode, the multibunch transverse wake field caused by first bunch affects the beam orbit of second bunch. In the KEKB linac, the orbit correction method based on the average minimum of two-bunch orbits has been adopted and has worked stably. However, a new two-bunch orbit correction method is strongly required to make the loss of charge less. We propose the new two-bunch orbit correction method based on the local bump method. In this scheme, some local bumps are intentionally constructed in a low-energy area. Adjusting the local bump height can control the wake field strength affecting second bunch. In this paper, we report the results of preliminary beam test to confirm this new method being useful.

1 INTRODUCTION

The KEKB project started in 1994 to investigate CP-violation in B-meson decays with the double-ring collider [1]. It consists of 8-GeV electron and 3.5-GeV positron storage rings. The beam injection efficiency from the injector linac to the ring should be boosted as high as possible since the performance of the experiment depends strongly on the integrated luminosity. In order to achieve efficient full-energy injection, the original 2.5-GeV electron linac was upgraded up to 8-GeV, while enforcing the acceleration gradient by a factor of 2.5 and by extending the length of the linac. The layout of the KEKB linac is shown in Fig. 1. Because of the site limit, two linacs with 1.7-GeV and 6.3-GeV were combined using a 180-degree bending magnet system to form a J-shape linac. In the J-arc section, the beam optical parameters are determined so that the achromatic and isochronous conditions are fulfilled [2].

A beam starting from an electron gun passes two subharmonic bunchers (SHB1: 114.24 MHz and SHB2: 571.2 MHz) and an S-band bunching section (2856 MHz) to accomplish a single-bunched beam with a bunch width of about 10 ps (FWHM). After acceleration to the end of sector B (1.5-GeV), it enters into the J-arc section. It is then re-accelerated either to the end of the linac (8.0-GeV) or to the positron production target (3.3-GeV), depending on the operation mode. In order to obtain high-intensity positrons, large amount of primary electrons should be transported to the positron production target. The primary electron beam was designed to be 10 nC per bunch to produce 3.5-GeV positrons with 0.64 nC. We therefore doubled the bunch number to increase the positron beam intensity per pulse and to halve the injection time [3]. Figure 2 shows the orbit and current status display for two-bunch operation. The bunch interval time must be 96.29 ns, which corresponds to the common period of the frequencies of the linac and the ring.

In the KEKB linac, the orbit correction method based on the average minimum has been successfully used for daily operation. The orbit distortion causes the beam loss especially in the J-arc section. Using this method, the orbit correction is carried out so that the average orbit distortion of both bunches can be minimized. Figure 2 shows the orbit and charge status panel in the two-bunch operation. This example shows that a charge loss of second bunch is larger than that of first bunch because of the deterioration of second bunch orbit. In order to avoid such beam loss due to orbit distortion and obtain more high-intensity positrons, a new orbit correction method is
strongly required.

Figure 2: Orbit and charge status panel for the two-bunch operation mode. Top and middle show the horizontal and vertical orbit respectively. Bottom shows charges of each bunch. Blue and light green indicate first and second bunches.

2 TWO-BUNCH ORBIT CORRECTION METHOD

In a new two-bunch orbit correction method we propose, the beam position of first bunch is corrected by using the wake field kick of first bunch. When the first bunch beam traverses the off-center of an accelerating structure, the long-range transverse wake field caused by first bunch kicks second bunch. Figure 3 shows the schematic drawing of this correction method. If the bump height is adjusted to a suitable value, the orbit of second bunch can be controlled arbitrarily. If the both beam positions and angles of each bunch can be corrected to zero in a low energy section, the beam orbit keeps constant in the following beam line. To accomplish such high-quality orbit correction will result in reducing the charge loss in the J-arc section of the KEKB injector linac.

3 RESULTS OF BEAM TEST

In this section, the results of beam test are presented. Only horizontal beam orbit correction was carried out in this experiment. The procedure of this test is as follows:

(a) Construct a first local bump at a beam position monitor (BPM) where the orbit difference between first and second bunch are getting larger. Adjust its bump height so that the orbit difference is minimized at the downstream side of the bump.

(b) The step (a) will deteriorate the beam orbits of each bunch at the further downstream side. With keeping the first bump, construct the second local bump at a downstream of the previous bump. After then, iterate the above procedures in order to squeeze out the orbit difference toward the downstream side of the linac, and minimize the beam position and angle of each simultaneously.

If the orbits of each bunch are corrected in the Sector in A or B without the optics mismatch, it can be expected that the charge loss in the J-arc section will be decreased.

Figure 4 shows the software panel for construction a local bump. This software can construct a local bump at arbitrary BPM position in the KEKB linac. In this beam test, three local bumps were successively constructed for the orbit correction. In Fig. 4, the local bumps (1), (2) and (3) were constructed by changing bump heights of the SPA11, SPA32 and SPB14 BPMs, respectively. First of all, a bump height of SPA11 was set to 1 mm so that the orbit difference is reduced at SPA32. However, the orbit difference in the downstream area of SPA32 got worse after first bump was constructed. In the next step, in addition to the bump (a), a bump height of SPA32 was varied in order to reduce the orbit difference of each bunch at the downstream of the second bump (b). After the height of the bump (b) was set to 2.5 mm, the bump (c) was constructed, while the bumps (a) and (b) were

Figure 3: Schematic drawing of a new two-bunch orbit correction method using the transverse wake field kick caused by first bunch.

Figure 4: Software panel to construct a local bump. Dotted plot shows a range of local bump. Three local bumps are successively contracted.
Figure 5: Rms orbit difference between first and second bunches versus bump height. The rms orbit difference calculated from the all BPMs between SPA12 (first bump position) to SPR01 (entrance of J-arc section). Three local bumps were contracted successively. In the case of (c), therefore, three local bumps were simultaneously constructed.

kept.

Figure 5 shows the results of the rms orbit differences between first and second bunches. The rms orbit difference calculated from the all BPMs between SPA12 (first bump position) to SPR01 (entrance of J-arc section). These three local bumps were contracted successively. In the case of (c), therefore, three local bumps were simultaneously constructed. The result of varying the bump height of first bump (1) is plotted in Fig. 5-(1). The rms orbit difference is increased after the bump is constructed because the orbit at the further downstream of SPA32 is deteriorated. Increasing the bump height of second bunch (2) can be reduced the orbit difference as shown in Fig. 5-(b). Figure 5-(c) shows that varying the bump height of bump (3) cannot adjust the rms orbit at the downstream side. The beam energy in the Sector B is higher than that in the Sector A. For that reason, the long-range wake field of first bunch cannot fully kick the second bunch. In addition to that, the bump (3) was contracted in the relatively long area where three different types of accelerating structures are used for compensating the transverse wake field.

With regard to the beam loss after orbit correction, the transmission rate decreased to a great degree. To recover the transmission rate, we tried an optics matching. However, the emittance could not be measured since the large emittance growth prevented the wire scanner measurement. If the bump positions are selected by those betatron phases, some suitable bump combinations will be found without any emittance growth.

4 SUMMARY AND FUTURE PLAN

A new orbit correction method was proposed for two-bunch operation in the KEKB injector linac. This method uses the long-range transverse wake field kick caused by the first bunch. To confirm this correction method, the preliminary beam test was carried out in the KEKB injector linac. The results of beam test shows that this correction method can be useful for two-bunch orbit correction, when the bump positions are suitably selected.

On the other hand, the emittance growth due to local bump caused also the optics mismatch between the straight and J-arc section. It became an origin of charge losses. In order to avoid such emittance growth, constructing additional bump at the 180-degree phase difference is very effective. With all of these conditions fulfilled, the two-bunch beam orbit can be corrected without the emittance growth. Therefore, this new orbit correction method can be used for the daily operation. More detailed beam test and numerical simulation will be carried out in the near future, and we will present its result elsewhere.

ACKNOWLEDGMENTS

The authors would like to thank the member of LCG (Linac Commissioning Group) for their useful discussions and advices. We would like to thank the linac operators for their great help in our experiments.

REFERENCES