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Abstract 
The LHC RF system commissioning with beam and 

physics operation for 2010 and 2011 are presented.  It 
became clear in early 2010 that RF noise was not a 
lifetime limiting factor: the crossing of the much feared 
50 Hz line for the synchrotron frequency did not affect the 
beam. The broadband LHC RF noise is reduced to a level 
that makes its contribution to beam diffusion in physics 
well below that of Intra Beam Scattering. Capture losses 
are also under control, at well below 0.5%. Longitudinal 
emittance blow-up, needed for ramping of the nominal 
intensity single bunch, was rapidly commissioned. In 
2011, 3.5 TeV/beam physics has been conducted with 
1380 bunches at 50 ns spacing, corresponding to 55% of 
the nominal current. The intensity per bunch (1.3×1011 p) 
is significantly above the nominal 1.15×1011. By August 
2011 the LHC has accumulated more than 2 fb-1 
integrated luminosity, well in excess of the 1 fb-1 target 
for 2011. 

PROTON RF OPERATION 2010 
With single bunch pilot (5×109 p), there were no 

observable issues when the synchrotron frequency 
crossed the much feared 50 Hz line during the ramp. The 
lifetime was very good: the bunch lengthening 
(4 length) was around 30 ps/hour at the 450 GeV 
injection energy and 6 ps/hour at 3.5 TeV. The single 
bunch intensity was then increased up to the nominal 
1.15×1011 p with no issue at 450 GeV but, at that intensity, 
the bunch was initially unstable during the ramp, due to 
the significant adiabatic bunch length reduction (resulting 
in less than 600 ps, from a measured 1.2 ns at injection) 
and consequent loss of Landau damping. The bunches 
were blown up longitudinally in the SPS to achieve 
stability. This temporary solution increased capture losses 
though. It was used until the deployment of the LHC 
longitudinal emittance blow-up [1]. The LHC blow-up is 
active through the ramp and adjusted to keep the bunch 
length at 1.2 ns, thus achieving longitudinal stability as 
predicted [2].  We injected 0.5 eVs emittance bunches 
from the SPS (1.5 ns long), captured with 3.5 MV and 
increased the voltage linearly though the ramp to 8 MV, 
kept in physics. The proton run came to an end in October 
with 368 nominal bunches (12% of the nominal ring 
intensity) and 150 ns bunch spacing. More details on the 
LHC RF operation 2010 can be found in [3]. 

 

RF NOISE AND BEAM DIFFUSION 
At 3.5 TeV the synchrotron radiation damping time is 

about two hundred hours. The target for longitudinal 
emittance growth time caused by RF noise was 13 hours 
minimum at 7 TeV (equal to the synchrotron radiation 
damping time at that energy). RF noise was a major 
concern during LHC design: klystrons convert HV ripples 
to phase modulation whose frequencies are harmonics of 
50 Hz, extending to 600 Hz in the LHC. During 
acceleration the synchrotron frequency crosses the 50 Hz 
line and problems were expected. The RF was therefore 
designed to reduce noise sources and minimize their 
impact on the beam. The LHC RF profited from the 
experience of SPS p-pbar RF operation. The RF Beam 
Control system was designed with a strong Beam Phase 
Loop (BPL) that compares the beam phase (averaged over 
all bunches of a given ring) with the cavity field vector 
sum and minimizes the error by acting on the RF. The 
BPL reduces the noise on the dipole mode 0 synchrotron 
sidebands (fs ~ 28 Hz in physics). Without it the phase 
noise at fs leads to 300-400 ps/hour bunchlengthening at 
3.5 TeV/c.  By changing the BPL gain, we can increase 
the level of the phase noise Power Spectral Density S(f) 
(PSD) at the synchrotron frequency until its effect is 
significantly above the one of Intra Beam Scattering 
(IBS).  As RF-caused bunch lengthening is proportional 
to the PSD sampled by the beam at the synchrotron 
frequency, 
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we can then scale down the noise power by the BPL gain 
to estimate the RF contribution. This exercise gives 
2.5 ps/h in physics [3,4]. In 2011, with 1380 bunches per 
ring and 1.3×1011 p/bunch, the observed bunch 
lengthening is around 15 ps/hour in physics, dominated 
by IBS effects.  

CAPTURE REVISITED IN 2011 
With the RF parameters of 2010, the SPS bucket at 

extraction was much larger than the LHC bucket (twice as 
long, 70% taller and three times the area), resulting in 
uncaptured beam at injection into the LHC. The 
uncaptured beam drifted gently in the machine and would 
occasionally be deflected by the kicker at a later injection, 
leading to a dump of the whole circulating beam by the 
machine protection.  Reduction of the SPS bunch length 
would not be a lasting solution due to longitudinal 
instability in the SPS, for bunch lengths below 1.5 ns, 
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kicker tanks. There was a strong dependence on bunch 
length. We are studying the possibility of physics with 
longer bunches as a mitigation for this heating problem. 
At present the average 4  length is 1.2 ns at the 
beginning of physics and grows to 1.35 ns after ten hours. 
Figure 2 shows the power spectrum of the beam current 
after six hours of physics. The 20 MHz spaced line 
pattern is created by the 50 ns bunch spacing. After 
compensation for cable attenuation and dispersion, an 
inverse FFT gives an estimate of the average bunch 
shape: there is a good fit with the parabolic amplitude 
density model. The bunch tails are much lower than in the 
Gaussian model, consistent with the excellent observed 
lifetime. 

LATEST PERFORMANCES 
With the injection gap cleaning active, capture losses 

are slowly cleaned out of the machine during the injection 
plateau resulting in virtually no loss at the beginning of 
the ramp. The efficiency of the RF capture can be 
estimated by comparing the intensity injected into the 
machine to the one arriving at 3.5 TeV. The figure is 
around 0.5% loss with 55% nominal intensity.  

Figure 3 shows the evolution of bunch length and the 
deduced growth rate, starting at the beginning of the flat 
top. There is a transient (whose origin is not fully 
understood) lasting for 30 minutes after the beams are put 
in collision. Thereafter the rate decreases gently from 
30 ps/h down to 8 ps/h towards the end of the nine hours 
long fill. 

 
Figure 3: Evolution of bunch length mean and growth rate 
during physics. 1380 b/beam, 1.3×1011 p/bunch. 

 
The LHC RF is designed to minimize transient beam 

loading: we keep the voltage constant during beam and 
no-beam segments. If the cavities are detuned for half 
beam current, perfect compensation of periodic beam 
loading is possible, in theory, with a constant klystron 
power, by modulating its phase only [6]. Figure 4 shows 
the performances achieved with 1380 bunches per beam. 
The effect of the gaps is clearly visible: the voltage 
amplitude varies by ± 0.3% and the phase by ± 0.5° only. 
The klystron phase changes by 60° in the no-beam gaps 
while its power is modulated at the transitions only. 

 
Figure 4: Cavity field (top) and klystron drive (bottom) in 
physics conditions. Beam current in red. The revolution 
period is 88.9 s. 

CONCLUSIONS 
In August 2011, 3.5 TeV/beam physics is being done 

with 1380 bunches at 50 ns spacing, corresponding to 
55% of the nominal current. The LHC has so far 
accumulated more than 2 fb-1 integrated luminosity well 
in excess of the 1 fb-1 target for 2011. The RF system has 
lived up to expectations. We are eager to move to 25 ns 
spacing and higher beam current. 
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