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Abstract

The pinch of the electron cloud due to a passing proton
bunch was extensively studied in a field free region and in a
dipolar magnetic field [1]. For the latter study, a strong field
approximation helped to formulate the equations of motio-
nand to understand the complex electron pinch dynamics,
which exhibited some similarities with the field-free situa-
tion [2]. Here we extend the analysis to the case of electron
pinch in quadrupoles and in sextupoles. We discuss the
limits of validity for the strong field approximation and we
evaluate the relative magnitude of the peak tune shift along
the bunch expected for the different fields.

INTRODUCTION

It has recently been recognized that the pinch of the
electrons during the bunch passage through an electron
cloud may be responsible of long term incoherent effects
on the protons [1, 2]. The studies of the induced diffu-
sional regime have been made for simplified frozen models
of the e-pinch taking place in special magnetic field config-
urations, namely in a field-free region and in a dipole field.
Intuition suggests that the structure of the pinched electrons
affects the diffusional regime, but till now no general study
of the dependence of the electron pinch on a higher order
magnetic field has been undertaken.

EQUATIONS OF MOTION

Here we derive the equations of motion for the electron
dynamics in a quadrupolar field and under the effect of the
passing proton bunch. In order to simplify the problem we
make the following assumptions on the transverse electric
and magnetic nonlinear fields:

1 The electric field is only transverse, i.e. �E =
(Ex, Ey, 0) and is given by an axisymmetric proton
bunch.

2 The magnetic field is generated by an ideal
quadrupole, i.e. �B = (Bx, By, 0) = (g y, g x, 0), with
g the field gradient.

For convenience we express the time variable in s = vpt,
where vp = c is the velocity of the protons. We also as-
sume that γe =

√
1− β2

e does not vary significantly, i.e.
the motion of the electrons remain non relativistic. The
usual parameter defining the strength of a quadrupole is
k = g/(Bρ), where Bρ is the rigidity. Recalling that
Bρe = p0 = mpγpc, where mp is the mass of the proton,

and γp = 1/
√
1− β2

p , we find g = kBρ = kγpmpc/e.

Under these conventions, the equations of motion of an

electron become

d2x
ds2 = − e

c2meγe
Ex + k

γpmp

γeme

dz
dsx

d2y
ds2 = − e

c2meγe
Ey − k

γpmp

γeme

dz
dsy

d2z
ds2 = −k γpmp

γeme

(
dx
dsx− dy

dsy
)
.

(1)

The analysis of the motion becomes easier by normaliz-
ing the electron coordinates to the transverse beam size σr,
therefore x = σrx̃, y = σr ỹ, z = σr z̃ (note the unusual
scaling in z). At the same time we scale the “time” variable
s according to s = σz ŝ. Therefore the equations of motion
read

d2x̃
dŝ2 = −σ2

z
e

c2meγeσr
Ex + σzkσr

γpmp

γeme

dz̃
dŝ x̃

d2ỹ
dŝ2 = −σ2

z
e

c2meγeσr
Ey − σzkσr

γpmp

γeme

dz̃
dŝ ỹ

d2z̃
dŝ2 = −σzkσr γpmp

γeme

(
dx̃
dŝ x̃− dỹ

dŝ ỹ
)
.

(2)

In these coordinates the “time” variable is normalized to
the rms bunch length, and we will consider the range −3 <
ŝ < 3 for a Gaussian bunch profile. Note that the electric
field components

− e

c2meγeσr
Ex, − e

c2meγeσr
Ex

have already been computed in Ref. [2], where
ωe(s) [m−1] ≡ √

λ(s)re/σr, was introduced as the
instantaneous linear electron oscillation frequency for an
arbitrary longitudinal line particle density λ(s), with re
designating the classical radius of the electron. Using
the radial coordinate r̃ =

√
x̃2 + ỹ2, the complete

scaled equations of motion for an electron subjected
to a proton electric field with longitudinal density
λ(ŝ) = Nb/(

√
2πσz) exp

(−ŝ2/2) are

d2x̃
dŝ2 − kσzσr

γpmp

γeme

dz̃
dŝ x̃+ σ2

zω
2
e(ŝ)x̃ =

− x̃σ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]

d2ỹ
dŝ2 + kσzσr

γpmp

γeme

dz̃
dŝ ỹ + σ2

zω
2
e(ŝ)ỹ =

− ỹσ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]

d2z̃
dŝ2 = −kσzσr γpmp

γeme

(
dx̃
dŝ x̃− dỹ

dŝ ỹ
)
.

(3)

These equations show that the effect of the quadrupole on
the electrons is proportional to the longitudinal scaled ve-
locity dz̃/dŝ of the electron itself. Note that the last equa-
tion can be integrated as

dz̃

dŝ
= −1

2
kσzσr

γpmp

γeme

(
x̃2 − ỹ2

)
+ C

where C is a constant of motion which depends on the ini-
tial condition.
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FIELD FREE ELECTRON DYNAMICS

Now we discuss whether the motion of the electrons can
be thought as being of “field free” type, as it takes place
in a drift space, or if it rather resembles an electron pinch
under the action of a dipole field. For this purpose consider
the coordinates defined as φ = x̃+ ỹ, and ψ = x̃− ỹ. This
is similar to a rotation of 45 degree but not divided by

√
2.

In these coordinates the electron radial position becomes
r̃2 = (φ2 + ψ2)/2 and the three equations of motion take
the form

d2φ
dŝ2 − kσzσr

γpmp

γeme

dz̃
dŝψ + σ2

zω
2
e(ŝ)φ =

−φσ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]

d2ψ
dŝ2 − kσzσr

γpmp

γeme

dz̃
dŝφ+ σ2

zω
2
e(ŝ)ψ =

−ψσ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]

dz̃
dŝ = − 1

2kσzσr
γpmp

γeme
φψ + C

(4)

Motion on the diagonal x̃+ ỹ = 0. Consider an elec-
tron at ŝini = −3, when the bunch enters into the cloud,
with initial condition φ(ŝini) = z̃(ŝini) = 0, and at rest,
i.e. dφ/dŝ(ŝini) = dz̃/dŝ(ŝini) = 0. Then the third equa-
tion of Eqs. 4 yields the constant of motion C = 0, and the
first equation becomes

d2φ
dŝ2 + 1

2

(
kσzσr

γpmp

γeme

)2

φψ2 + σ2
zω

2
e(ŝ)φ

= −φσ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]
. (5)

Then φ(ŝ) = 0 is a solution of this equation, i.e. the elec-
tron will evolve preserving x̃ + ỹ = 0. In fact φ(ŝ) = 0
always satisfies Eq. (5) as well as the initial conditions.

Motion on the diagonal x̃ − ỹ = 0. The argument is
similar. Now we consider an electron starting at ŝini =
−3 with initial conditions ψ(s̃ini) = z̃(s̃ini) = 0 and
dψ/dŝ(s̃ini) = dz̃/dŝ(ŝini) = 0. Then the third equa-
tion yields the constant of motion C = 0, and the second
equation becomes

d2ψ
dŝ2 + 1

2

(
kσzσr

γpmp

γeme

)2

φ2 ψ + σ2
zω

2
e(ŝ)ψ

= −ψσ2
z
ω2

e(ŝ)
r̃2

[
2
(
1− e−

r̃2

2

)
− r̃2

]
.

(6)

In this case ψ(ŝ) = 0 is a solution.
The conclusion is that all electrons located on the diag-

onals and at rest before the bunch passes through the cloud
will undergo a field-free pinch dynamics. Note that these
electrons will also not posses any longitudinal velocity as
dz̃/dŝ = 0 during their entire motion. That means they
remain in the transverse plane in which they were located
at the beginning of the pinch. One can, therefore, specu-
late that in a certain region close to the two diagonals the
electron motion will be dominated by field-free dynamics.
Simulations confirm this behavior.

Motion of Electrons on the Axes

If the electrons on the diagonal do not change their lon-
gitudinal position z̃, we should expect that the electrons lo-
cated along the x or y axis move significantly. Simulations
show that the electrons on the two axes (referring to Fig. 1)
effectively move along z̃ till (and some beyond) z̃ ∼ 10.
That is they move off their plane of ∼ 10 times the beam
size. The electrons on the y axis moves positively up to
(and some beyond) z̃ ∼ 10, while the electrons on the x
axis move negatively up to (and some beyond) z̃ ∼ −10.
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Figure 1: Electron density enhancement in: a) the x − y
plane at z = 0; b) the x − y plane at z = 1; c) the z − x
plane at y = 0; d) the z − x plane at y = 2; e) the z − y
plane at x = 0; f) the z − y plane at x = 1.

STRONG-FIELD APPROXIMATION
Previous electron-pinch simulations took advantage of

the strong field approximations. The strong-field approx-
imation is based on the assumption that the motion of an
electron is slow along the magnetic field lines (B-lines)
so that the orthogonal component of motion to the B-lines
makes several cyclotron rotations creating an average effect
of cancellation of the transverse motion. The integrated ef-
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fect is that the motion of the electron follows the B-lines.
It also is invoked an adiabaticity and the preservation of an
invariant which would be the cyclotron radius. We discuss
here the applicability of this approach.

From the equation of motions it is easy to prove that in
absence of electric fields the scaled velocity is constant,
i.e. d2ṽ/dŝ2 = 0. The instantaneous cyclotron radius ρ̃ is

1

ρ̃

d

dŝ
R̃ = σz |k|σr γpmp

γeme
r̃

where r̃ =
√
x̃2 + ỹ2, and R̃ =

√
x̃2 + ỹ2 + z̃2 and the

normalized cyclotron-oscillation period satisfies

τ̂ r̃ =
2π

|k|σzσr
γeme

γpmp
.

For the LHC parameters σz = 0.114 m, k = 0.0097 m−2,
σr = 0.88 mm, γe = 1, γp = 450 we find τ̂ r̃ = 7.87.
Therefore at small radii r̃ the normalized cyclotron period
τ̂ can become larger than the passage time of the bunch
through the cloud. Certainly in that case no averaging ef-
fect can be invoked to apply the strong field approxima-
tion. Fig. 1 shows a pinch of electrons under the effect
of an LHC bunch passage in a quadrupole: No strong field
approximation is used. The only conditions in which the
strong-B approximation can be applied are

1 when τ̂ � 6 (6 is the scaled time interval for the
bunch to go through the e-cloud), or equivalently
when 1.33 � r̃;

2 when the cyclotron radius is small with respect to the
variation of the magnetic field, in other words when
ΔB/B = 2ρ̃/r̃ � 1 that is

1

r̃2
d

dŝ
R̃

1

σz |k|σr
γeme

γpmp
� 1.

For LHC quadrupoles (dR̃/dŝ)/r̃2 � 0.8. Again,
this condition will be broken at small radius.

From this discussion we can certainly conclude that when
the electrons are inside the beam the strong field approx-
imation breaks down because the instantaneous cyclotron
motion has a period longer than the time of passage of the
bunch through the cloud. Therefore, it is not expected that
the electrons follow the magnetic field lines.

GENERAL MULTIPOLE FIELD
We consider now the pinch of electrons in a general mul-

tipole formed by normal and skew components of strengths
Kn, Jn. For convenience we define the variable Z =
x+iy, so that the magnetic field components can be written
as

V (Z) = By + iBx = Bρ(Kn + iJn)
Zn

n!
.

The equations of motion of an electron then become

d
dt

(
meγe

dZ
dt

)
= −e(Ex + iEy) + e dzdt (By − iBx)

d
dt

(
meγe

dz
dt

)
= −eRe [dZdt V (Z)

]
.

(7)

Now we note that

dZ

dt
V (Z) =

d

dt
Bρ(Kn + iJn)

Zn+1

(n+ 1)!
.

Therefore, the last equation (7) can be written as

meγe
dz

dt
= −eBρRe

[
(Kn + iJn)

Zn+1

(n+ 1)!

]
+ C

with C a constant of motion depending on the initial con-
ditions. In summary the equations of motion are

d
dt

(
meγe

dZ
dt

)
= −e(Ex + iEy) + e dzdt (By − iBx)

meγe
dz
dt = −eBρRe

[
(Kn + iJn)

Zn+1

(n+1)!

]
+ C

(8)
Now the fields (Ex, Ey), and (Bx, By) can be replaced in
the first equation and the same coordinate normalization be
applied to 8 as was done in (3).

Which are the electrons subjected to field free pinch un-
der the dynamics of Eqs. 8? For an axisymmetric cross-
section of the proton bunch the electric field is always radial
as in generalEx+ iEy = Zf(|Z|) (which is not the case if
the bunch is not axisymmetric). Therefore the trajectory of
the electrons undergoing a field free pinch is radial, of the
form Z = α(t)Z0, with Z0 = x0 + iy0 denoting the initial
condition of the electron and α(0) = 1. Of course, in the
presence of a multipolar magnetic field, free pinch is possi-
ble only where the magnetic field does not play any role in
the pinch process. In our model this happen only for those
electrons which have dz/dt = 0 at any time along a radial
trajectory. We will find now which are the allowed trajec-
tories for field free pinch. Lets take an electron at t = 0 at
rest, i.e. dz/dt = 0, then from Eq. 8 we find

C = eBρRe

[
(Kn + iJn)

Zn+1
0

(n+ 1)!

]
.

The condition of existence of trajectories of the from Z =
α(t)Z0 which keep dz/dt = 0 are found from the second
equation of Eqs. 8, namely

(−α(t) + 1)Re
[
(Kn + iJn)Z

n+1
0

]
= 0. (9)

DefiningKn+iJn = Kne
iφn , andZ0 = R0e

iψ0 , the pinch
free condition (Eq. 9) is possible if cos[ψ0(n+1)+φn] = 0,
which happens only for the electrons initially located on
2n + 1 lines going thorough the origin and tilted with the
angles

ψ0 =
π

2(n+ 1)
− φn
n+ 1

+
π

n+ 1
N

with N = 0, ..., 2n + 1. Note that the simultaneous pres-
ence of normal and skew component adds an angular shift
of −φn/(n+ 1) to the web of field free pinch lines.
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