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Abstract

The differential equations for the bunched beam enve-
lope through an axially symmetric DC accelerator are de-
rived. An example of such a case is the electron gun
with rf-modulated triode. In the case of no space charge,
a particle’s total energy is conserved, so the longitudinal
evolution is simple: particles of same energy are a fixed
time increment apart and this implies in first order that
their separation is proportional to their speed. However,
with space charge, the longitudinal force depends upon the
bunch length, so we need equations that track this parame-
ter.

INTRODUCTION

As alternative to multi-particle simulations, envelope
calculations are computationally much faster. However, ex-
isting envelope codes were either DC, non-relativistic, or
non-space-charge.

The mathematical fomalism for this technique, includ-
ing space charge, was established by Frank Sacherer[1].
The space charge forces depend crucially upon the bunch
dimensions in configuration space, so it is important that
these be tracked. In other words, it is insufficient to use
a formalism that first integrates the equations of motion to
derive the transfer matrices, and apply space charge effects
afterwards. Some implementations such as TRANSPORT
and TRACE3D divide standard elements into (hopefully suf-
ficiently short) segments interleaved with space charge
“lenses”. This is crude, approximate and non-adaptive.
TRANSOPTR[2] uses the envelope formalism, but did not

until now include the case of beam high intensity bunches
being accelerated with a DC potential difference accelera-
tor. This case is of particular importance for modeling the
grid-modulated elecron gun, as the bunch is created very
short (typically < 1 mm) then grows rapidly as it is accel-
erated from rest, finally attaining a length of a few cm (see
Fig. 1).

THEORY

Hamiltonian

With the distance along the reference trajectory s as the
independent variable, the Hamiltonian for the case with ax-
ial electric potential, no magnetic fields, and initially ignor-
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ing space charge, is

H(x, Px, y, Py, t, E; s) = (1)

= −
√(

E−qΦ
c

)2

− m2c2 − P 2
x − P 2

y

The potential is given by

Φ(r, s) = φ(s) − 1
4
φ′′(s)r2 + O(r4) (2)

This is time-independent, so E is conserved. Further, par-
ticles launched with identical coordinates except separated
in time by Δt will remain separated by this time, but of
course this means their spatial separation increases as long
as they are accelerating.

The 4 parameters (x, Px, y, Py) are small so we expand
to second order:

H ≈ −P − qφ′′

4βc
(x2 + y2) +

P 2
x + P 2

y

2P
(3)

Here P is an abbreviation containing E:

P =

√(
E − qφ

c

)2

− m2c2 (4)

Expanding about the reference energy E0 = E −ΔE with
ΔE � E0,

P = P0 +
ΔE

βc
− (ΔE)2

2β3γ3mc3
, (5)

(P0 = mc

√(
E0−qφ

mc2

)2

− 1 = mc
√

γ2 − 1 = mc βγ.)

H = −P0 − ΔE

βc
+ (6)

+
(ΔE)2

2β3γ3mc3
− qφ′′

4βc
(x2 + y2) +

P 2
x + P 2

y

2P

Note that through φ, P0 is dependent on s.
At this point the canonical variables are still t and −E.

To transform to (Δt,−ΔE), consider that

ds

dt
= βc =

Pc2

E − qΦ
(7)

so the reference particle’s time coordinate is t0 =
∫

ds
β0(s)c

.
This suggests a generating function

G = −
(

t −
∫

ds

β0c

)
(ΔE + E0) (8)
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(Check: ∂G
∂t = −E, ∂G

∂(−ΔE) = Δt.) The Hamiltonian gets

the added term ∂G
∂s = ΔE+E0

β0c :

HΔt =
(

E0

βc
− P0

)
+ (9)

+
(ΔE)2

2β3γ3mc3
− qφ′′

4βc
(x2 + y2) +

P 2
x + P 2

y

2P

(To keep the notation uncluttered, we drop the 0 subscripts
on the β’s and γ’s; it is understood that they refer to the
relativistic parameters of the reference particle.) The first
term is ignorable for our purposes as it depends upon s only
and not on any of the canonical variables.

Finally, we wish to transform from (Δt,−ΔE) to
(Δz, ΔP ) = (−βcΔt, ΔE/(βc)). (The reason for the
sign change is as follows: an early arrival implies Δt < 0,
but this means the particle is ahead so Δz > 0.) The gen-
erating function is

G = −βcΔtΔP (10)

(Check: ∂G
∂Δt = −ΔE, ∂G

∂(ΔP ) = Δz.) The term to be

added to the Hamiltonian is ∂G
∂s = β′

β ΔzΔP :

HΔz =
β′

β
ΔzΔP +

(ΔP )2

2γ2P
− qφ′′

4βc
(x2 + y2)+

P 2
x + P 2

y

2P
(11)

β′ = dβ
ds can be found from φ using γmc2 = E0 − qφ

and E0=constant: γ ′ = − qφ′

mc2 , β′ = γ′

βγ3 .

Infinitesimal Transfer Matrix

A convenient and useful way of representing the equa-
tions of motion through the optical element is the so-called
infinitesimal transfer matrix approach[1]. The infinitesimal
transfer matrix F (s) is defined as (T − I)/ds where T is
the transfer matrix from s to s + ds and I is the identity
matrix. With this definition one has for individual particles

dx
ds

= Fx, where x ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

x
Px

y
Py

Δz
ΔP

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

Beams of particles are conveniently represented by the so-
called σ-matrix; the elements of which represent second or-
der moments of the beam[1]. The σ-matrix and the transfer
matrix M transform through the system according to the
equations

dσ

ds
= Fσ − σFT , (13)

dM

ds
= FM. (14)

where F T is the transpose of F .

Now that the Hamiltonian for linear motion (eqn. 11) has
been obtained, it is a simple matter to find the infinitesimal
transfer matrix F . Writing the equations of motion (x ′ =
∂H/∂Px, P ′

x = −∂H/∂x, etc.) in the form of Eqn. 12, the
following F -matrix is found for the axially symmetric DC
accelerator:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
P 0 0 0 0

qφ′′
2βc 0 0 0 0 0

0 0 0 1
P 0 0

0 0 qφ′′

2βc 0 0 0

0 0 0 0 β′

β
1

γ2P

0 0 0 0 0 −β′

β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

SPACE CHARGE

Space charge forces depend recursively upon the σ-
matrix elements, and are simply added to the focusing el-
ements F2n,2m−1|n,m=1,2,3 of the element’s infinitesimal
transfer matrix such as eqn. 15 above.

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
P 0 0 0 0

Kx + qφ′′

2βc 0 Kxy 0 Kxz 0
0 0 0 1

P 0 0
Kxy 0 Ky + qφ′′

2βc 0 Kyz 0
0 0 0 0 β′

β
1

γ2P

Kxz 0 Kyz 0 Kz −β′
β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)
In the symmetric case with axes along x, y, and z, the cross
terms disappear; Kxy = Kxz = Kyz = 0. (In the general
case, we make the calculations in the frame of the ellip-
soid’s axes, and then perform a rotation to the lab frame.)

This technique is used in the code TRANSOPTR, as de-
scribed by de Jong[2]. The resulting equations can only be
solved numerically.

The given references[1, 2] treat space charge in the non-
relativistic regime, where (for particle charge q, bunch
charge Q)

Kx =
qQ

4πε0

1
βc

RD(σ33, σ55, σ11) (17)

Ky =
qQ

4πε0

1
βc

RD(σ55, σ11, σ33) (18)

Kz =
qQ

4πε0

1
βc

RD(σ11, σ33, σ55) (19)

where RD is the Carlson elliptic integral

RD(u, v, w) =
3
2

∫ ∞

0

dt

(t + w)
√

(t + u)(t + v)(t + w)

and σij is the usual TRANSPORT-notation σ-matrix, but us-
ing

√
5 times rms values for the case of the non-uniformly-

populated ellipsoid, e.g. σ11 =
√

5〈x2〉.
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It was not obvious that TRANSOPTR was correct in the
relativistic regime. There are two effects that need to be
considered to generalize the equations: the space charge
magnetic field, and bunch length contraction. For detailed
derivations, the interested reader is referred to the Ph.D.
thesis of Fubiani[3]. The first effect requires dividing the
space charge force by γ2. The second requires that the
Carlson elliptic integrals’ arguments be modified. The re-
sult is:

Kx =
qQ

4πε0

1
βγc

RD(σ33, γ
2σ55, σ11) (20)

Ky =
qQ

4πε0

1
βγc

RD(γ2σ55, σ11, σ33) (21)

Kz =
qQ

4πε0

1
βγc

RD(σ11, σ33, γ
2σ55) (22)

These together with the evolution equation for the σ-matrix
(13) and the accelerator column infinitesimal ransfer ma-
trix (16) form a closed system of equations. An example
calculation is shown in Fig. 1.
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Figure 1: Beam envelopes calculated from a cathode,
Q = 30 pC bunches accelerated to 300 keV in a distance
of 9.5 cm. The case without space charge is shown dotted
for comparison.

Long-bunch Limit

An interesting limit is the long bunch, since this can be
approximated as a continuous beam with current I . First
of all, it is clear that for this limit to apply, bunch length 	
transverse size is not a necessary condition. Rather, γ times
bunch length 	 transverse size. This means that for exam-
ple a 1 mm long by 1 mm wide electron bunch is already
well into the long-bunch regime with energy of 10 MeV.

Secondly, in the long bunch regime, the Carlson integrals
governing transverse space charge are ∝ (γ

√
σ55)

−1, or
the inverse bunch length augmented by the factor γ. Specif-
ically, for u 	 (v, w),

RD(u, v, w) → 3√
uw(

√
v +

√
w)

(23)

Substituting 23 into the equations for K:

Kx =
qI

4πε0

1
β2γ2c2

1
a(a + b)

(24)

Ky =
qI

4πε0

1
β2γ2c2

1
b(a + b)

(25)

where we use an appropriately-defined (distribution depen-
dent) effective current I ∝ Q√

σ55βc and a, b ∝ √
σ11,

√
σ33,

so these can be seen to reduce to the Kapchinsky-
Vladimirsky equations.
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