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Abstract 
A theory is presented that describes steady-state one-

dimensional Child-Langmuir flow at a self-consistent 
finite temperature distribution.  In particular, warm-fluid 
equations and adiabatic equation of state are used to 
derive the self-consistent Poisson equation. The profiles 
of the charged-particle density, the velocity, the 
electrostatic potential, the pressure and the temperature 
are computed. The adiabatic equation of state assures the 
conservation of normalized (longitudinal) rms thermal 
emittance of any small segment of the flow. Good 
agreement is found between the approximation of the 
adiabatic equation of state and self-consistent simulation. 

INTRODUCTION 
Recently, there are renewed interests in the research 

and development of high-brightness dc thermionic 
electron or ion guns. The renewed interests arise from a) 
applications of high-brightness dc electron guns in x-ray 
free electron laser applications [1], and b) utilizations of 
high-brightness dc electron guns in the realization of 
adiabatic thermal beam equilibria in periodic focusing 
fields [2-5].  

The 1D cold-fluid Child-Langmuir (C-L) flow [6,7] is 
an important aspect of dc thermionic gun theory. It 
corresponds to the cold-fluid equilibrium of a charged-
particle flow between two plates with an electrostatic 
potential bias.   

The 1D adiabatic thermal C-L flow discussed in this 
paper corresponds to a warm-fluid equilibrium of a 
charged-particle flow between two plates with an 
electrostatic potential bias under the adiabatic equation of 
state. A warm-fluid description of the 1D adiabatic 
thermal C-L flow is presented.  A self-consistent Poisson 
equation is derived. In the limit of zero temperature, the 
self-consistent Poisson equation recovers the 
corresponding Poisson equation for the cold-fluid C-L 
flow. An effort is initiated to validate the theory via self-
consistent simulation. To date, good agreement has been 
found between the approximation of the adiabatic 
equation of state and self-consistent simulation in the 
high-temperature regime. 

THEORY OF ONE-DIMENSIONAL 
ADIABATIC THERMAL CHILD-

LANGMUIR FLOW 
We consider the non-relativistic 1D C-L flow under the 

influence of a finite temperature profile between two 
conducting plates located at 0z  and dz  . The 
adiabatic warm-fluid equations in cgs units are:  
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where n , V ,  , p  and T  are the equilibrium density, 

flow velocity, electrostatic potential, longitudinal pressure 
and temperature profiles, respectively, Bk  is the 

Boltzmann constant, and m  and q  are the rest mass and 

charge of the charged particle, respectively.  
Equation (4) is the one-dimensional adiabatic equation 

of state, which can be derived in [8]. It is a statement of 
entropy conservation. For any small segment of the flow, 
the normalized rms thermal emittance  n  is 

proportional to 3/ np

 

or 2/ nT , where 
 

is the 

unnormalized rms thermal emittance, 2/122 )/1(  cV  

1  is the relativistic mass factor, and cV /  with c  

being the speed of light in vacuum. Therefore, the 
adiabatic equation of state assures that the normalized rms 
thermal emittance of any small segment of the flow is 
conserved.  

Substituting Eqs. (4) and (5) into Eq. (1) yields  
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Equation (6) or (7) is an important conservation law in 
addition to charge conservation, i.e., .constqnVJ   

and entropy conservation, i.e., ./ 3 constnp   

Because  

./ 2 constnT  ,                              (8) 
from Eqs. (4) and (5), we express Eq. (7) as  
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where the constant C  is defined by 

  cBTkmVC
2

3
0

2

1 2  ,                     (10) 

cT  is the emitter temperature, and use has been made of 

the boundary condition   00  . The solutions to Eq. (9) 

are   
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Because 0q

 

in the gun, the solution of interest is  
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which, in the cold limit ( 0T ), gives  
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In order for 2V to be real, we must have  
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Using the boundary conditions at the emitter, i.e., 
  00 z ,   cTzT  0

 

and  0)0( nzn  , we find 

that  the critical value of C

 

at which the equal sign in Eq. 
(14) holds is    
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Substituting Eq. (15) and    0/0 qnJV 

 

into Eq. (10), 

we obtain 

cBcrit TkC 3 .                             (16)  

At cBcrit TkCC 3 , we have  
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The boundary conditions for Poisson’s equation (20) are  
   000                              (21) 

and 
  dd   ,                              (22)  

where prime denotes the derivative with respect to z . 
Note that   00   is the condition for space-charge-

limited emission. For 13/  cBTkq , we may 

approximate Eq.  (20)  as  
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which gives the dependence of 2z
 

at very small 

values of z .  
It is useful to scale Eq. (20) in terms of the quantities in 

the cold-fluid C-L flow, i.e.,  
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where  

 

Figure 1: Plots of the normalized potential d/  versus 

the normalized distance dz /  for a) cold-fluid C-L flow 

with 1ˆ J
 
and 0ˆ cT

 
and b) adiabatic thermal C-L flow 

with  15.1ˆ J
 
and 001.0ˆ cT . For 1.0cBTk  eV, the 

choice of system parameters corresponding to a low 
voltage diode with 100d  V.  
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is the current density of the cold-fluid C-L flow in which 

0ˆ cT , 1ˆ J
 
and 3/4ˆˆ z . The boundary conditions for 

Eq. (23) are:  

   0ˆ00ˆ     and    11ˆ  .                (27) 

 Figure 1 shows d/  versus dz /  for a) cold-fluid C-

L flow and b) adiabatic thermal C-L flow with  15.1ˆ J
 and 001.0ˆ cT . For 1.0cBTk  eV, the choice of system 

parameters corresponds to a low-voltage electron diode 
with 100d  V. It is interesting to observe that for the 

choice of system parameters in Fig. 1, the current density 
of 1D adiabatic thermal C-L flow is 15% higher than the 
cold-fluid C-L current given in Eq. (33).  

Figure 2 shows d/  versus dz /  for a) cold-fluid C-

L flow and b) adiabatic thermal C-L flow with  6.2ˆ J
 and 1.0ˆ cT . For 1.0cBTk

 
eV, the choice of system 

parameters corresponds to a low-voltage electron diode 
with 0.1d  V. 

SELF-CONSISTENT SIMULATION 
One-dimensional self-consistent simulations are 

performed to verify the theoretical predictions. In the 
simulations, planar charged sheets are used. A detailed 
description of the simulation model is given in [9].  
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Figure 2: Plots of the normalized potential d/  versus 

the normalized distance dz /  for a) cold-fluid C-L flow 

with 1ˆ J
 
and 0ˆ cT

 
and b) adiabatic thermal C-L flow 

with  6.2ˆ J
 
and 1.0ˆ cT . For 1.0cBTk  eV, the choice 

of system parameters corresponds to a low-voltage 
electron diode with 0.1d  V. 

 

Figure 3: Comparison of   22 /0 nTTn c

 
versus the 

normalized distance dz /  from simulation with theory for 
the choice of system parameters corresponding to 

10/ 22 dmTk pcB  ,   48.5/0 dV p  and 22/ dmq pd   

10 .  

In contrast to the simulations in [9], which employed a 
truncated Maxwellian distribution in the velocity space at 
the emitter ( 0z ), the present simulations employ a full 
Maxwellian distribution with temperature cT  shifted by 

 0V  in the velocity space at 0z . When a charged sheet 

strikes the plate at dz  , it is replaced by a new charged 
sheet at the emitter ( 0z ). The newly injected charged 
sheets are taken from the shifted full Maxwellian 
distribution.  

Preliminary simulation results are obtained. To date, 
the approximation of the adiabatic equation of state, i.e., 
Eq. (4) or (8), has been found in good agreement with 
self-consistent simulation in the high-temperature regime 

with 1/ 22 dmTk pcB  . Here, mnqp /4 22    is the 

plasma frequency associated with the average particle 

density 
d

dzzndn
0

1 )( . The plots of   22 /0 nTTn c  versus 

the normalized distance dz /  in Fig. 3 show the 
comparison between theory and simulation for the choice 
of system parameters corresponding to: 

10/ 22 dmTk pcB  , 10/ 22  dmq pd  ,    dV p/0  

48.5 . In the simulation, 50000 charged sheets are used. 
Within the statistical fluctuations, the quantity 

  22 /0 nTTn c

 
is conserved. The simulation results in Fig. 3 

validate the approximation of the adiabatic equation of 
state, i.e., Eq. (4) or (8). They also confirm that the 
normalized (longitudinal) rms thermal emittance of any 
small segment of the flow is conserved. 

CONCLUSION 
A theory was presented that describes steady-state one-

dimensional Child-Langmuir flow at a self-consistent 
finite temperature distribution.  In particular, warm-fluid 
equations and adiabatic equation of state were used to 
derive the self-consistent Poisson equation. The profiles 
of the charged-particle density, the velocity, the 
electrostatic potential, the pressure and the temperature 
are computed. An effort was initiated to validate the 
theory via self-consistent simulation. To date, good 
agreement was found between the approximation of the 
adiabatic equation of state and self-consistent simulation 
in the high-temperature regime. 
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