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Abstract

The projected fast ramped synchrotron SIS100 for FAIR
uses an elliptical stainless steel beam pipe of 0.3 mm thick-
ness. The lowest coherent betatron sidebands reach down
to 100 kHz which demands accurate impedance calcula-
tions in the low frequency (LF) regime. For these fre-
quencies, i.e. skin depth greater than wall thickness, struc-
tures behind the pipe may contribute to the impedance.
Due to the extremely large wake length numerical meth-
ods in the time domain are not applicable. The longitu-
dinal and transverse impedance of the thin SIS100 beam
pipe including structures behind the pipe are obtained nu-
merically by a method using power loss in the frequency
domain. We compare different analytical models for sim-
plified pipe structures to the numerical results. The dc and
ultra-relativistic limits are investigated. The interpretation
of bench measurements in the LF regime is discussed.

FORMULATION OF THE PROBLEM

This work is dedicated to the resistive wall coupling
impedance of the SIS100 beampipe shown in Fig. 1. Since
the imaginary part of the coupling impedance is domi-
nated by space charge effects, the problem reduces to the
determination of the real part of the coupling impedance.
The real part of coupling impedance describes the resistive
power loss of the beam that is responsible for wall heating
and instability growth.

Figure 1: Proposed SIS100 pipe

The beam in a synchrotron is modeled as a disc of sur-
face charge density σ traveling with velocity v. The dis-
placement dx of the beam (i.e. a coherent dipole oscilla-
tion) can be approximated to first order by

σ(�, ϕ) ≈ q

πa2
(Θ(a− �) + δ(a− �)dx cosϕ). (1)
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The force acting back on the beam is described by the cou-
pling impedance [1]

Z‖(ω) = − 1

q2

∫
beam

�E · �J∗
‖dV (2)

Z⊥,x(ω) = − v

(qdx)2ω

∫
beam

�E · �J∗
⊥dV. (3)

These expressions represent the beam’s power loss divided
by its current squared. The beam current in frequency do-
main (FD) is obtained from Eq. 1 as

Js,z(�, ϕ, z;ω) = J‖ + J⊥ = σ(�, ϕ)e−iωz/v (4)

such that its magnitude is independent of the beam velocity.
This leads to a magnetic field in FD that is also independent
of v and therefore, the transverse resistive wall impedance
obtained by Eq. 3 is linear in v. The charge density corre-
sponding to Eq. 4 is

�
s
(�, ϕ, z;ω) =

1

v
σ(�, ϕ)e−iωz/v (5)

which plays a major role for the longitudinal resistive wall
impedance. In the following both the beam current and
charge will be used as source terms in the Helmholtz equa-
tion.

AXIAL WAVES VERSUS RADIAL WAVES

In vacuum or metal, i.e. μ = μ0 and ε = ε0, the
Helmholtz equation for the longitudinal electric field in fre-
quency domain (FD) reads

(
�⊥ − iωμκ− ω2

β2γ2c2

)
Ez = − iωμσ

β2γ2
e−iωz/v (6)

where the r.h.s. represents both the source charge and cur-
rent. This is a modified Bessel equation in cylindrical co-
ordinates, i.e. the radial dependence is aperiodic. Since
the complex exponential describes axial wave propagation
this setup will be addressed as axial model [2]. If the setup
of wire bench measurements is considered, it is possible to
obtain radially propagating waves as well. For a short de-
vice under test, i.e. l << λ, the longitudinal phase advance
is small and therefore one can approximate this setup by an
entirely 2D model. This means ∂z = 0 and subsequently
the charge is static and the coupling impedance is only due
to the current in the wire. The model equation becomes

(�⊥ − iωμκ+ ω2με
)
Ez = iωμσ (7)
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which is an ordinary Bessel equation describing radially
propagating waves. Note that the axial model agrees with
the radial one if β → ∞ is applied [2]. Since infinite veloc-
ity is unphysical, the two models have to be distinguished
properly.

Both Eqs. 6 and 7 have been solved for Ez and sub-
sequently for the coupling impedances using a formalized
field matching technique. This has been implemented in
Mathematica R©[7] for an arbitrary number of concentric
cylindrical layers which allows studies of characteristic fre-
quencies and different boundary conditions.

Figures 2 and 3 show the wall current at unit beam cur-
rent for a circular beampipe with radius b = 40 mm, thick-
ness d = 0.3 mm and conductivity κ = 1.4 × 106 S/m
(in the following, these data will be used exemplary). The
frequency ωg with |Iw(ωg)|/Ib = 1/

√
2 (the onset of wall

current) can be approximated employing lumped element
circuits. For the monopolar case one obtains approximately

ωg,‖ ≈ R

Lpipe
≈ 1

μκbd ln h2

b+d

(8)

whereas in the dipolar case one obtains ([3],[4])

ωg,⊥ ≈ R⊥
L⊥

≈ 2

μκbd
, (9)

independent of the boundary radius h2. This important dif-
ference between monopole and higher multipoles follows
from the location of the mutual flux inside the pipe.
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Figure 2: Monopolar wall current in the radial model with
boundary radius h2 as parameter
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Figure 3: Monopolar wall current in the axial model with
open boundary. For a closed boundary, similar dependen-
cies as for the radial model are obtained.

Therefore and due to the independence of the magnetic
field on the velocity (see Eq. 4), one expects agreement
between both models for the transverse impedance result.
In the ultrarelativistic case, the axial and the radial model
disagree at the longitudinal impedance result. This is due
to the surface impedance on the outside of the pipe which
vanishes in the ultrarelativistic case (’pancake-field’).

LF NUMERICAL MODEL

The radial model gives rise to a numerical method em-
ploying power loss to determine the resistive wall coupling
impedance. The power loss can be determined via a post-
processing template in e.g. CST EM-Studio R©[6]. The
connection to the real part of the impedance is [5]

Re{Z‖}
l

=
1

I2
δP

δz
=

1

I2δz

1

2

∫
pipe

�E · �J∗
dV (10)

Re {Z⊥,x(ω)}
l

=
c

ωd2x

1

I2
δP

δz
. (11)

Figures 4 and 5 show a comparison of the analytical ap-
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Figure 4: Comparison of analytical and numerical longitu-
dinal impedance for a circular beampipe
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Figure 5: Comparison of analytical and numerical trans-
verse impedance for a circular beampipe

proaches and a numerical calculation via Eqs. 10 and
11. The characteristic skin-effect frequency is given by
fs = 1/(πμκd2) ≈ 2 MHz. The plateau for the longitudi-
nal impedance is the Ohmic resistance R ≈ 10 mΩ. The
frequency on which the longitudinal impedance is half the
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Ohmic resistance is given by fg,⊥ = ωg,‖/2π ≈ 3 kHz at
the onset of the wall current. This is also equivalent to the
onset of the pipe’s shielding property. Note that the value
obtained by Eq. 8 corresponds only to the radial model.

The transverse impedance reaches a maximum at fg,⊥ =
ωg,⊥/2π ≈ 15 kHz which also represents the onset of the
dipolar wall current and the onset of the shielding of dipolar
beam oscillations.

PREDICTIONS FOR THE SIS100
BEAMPIPE

The SIS100 beampipe is supposed to serve as a cryo-
adsorption pump which means that the temperature has to
be kept below 10 K. In order to compensate the heat due
to eddy currents during the magnet ramp, cooling tubes are
considered to be attached on the outside of the beampipe.
Figure 6 shows different proposed setups where the box
around the pipe represents a worst case scenario of bad con-
ducting material in the vicinity of the beampipe. Since the

Figure 6: Proposed SIS100 beampipe setups

longitudinal impedance of the SIS100 pipe causes only a
negligibly small heat load, it will not be discussed here.

The real part of the transverse impedance of the SIS100
pipe as it is relevant for coherent transverse instabilities has
been obtained numerically. Figures 7 and 8 show that there
is an influence on the outside equipment, as analytically
expected, only below the frequency of onset of wall cur-
rent. Above this frequency, the pipe shields well and there-
fore the impedance values for all setups coincide. Note that
these results cannot be obtained by the analytic theory for
circular pipes since an equivalent radius would become fre-
quency dependent. Another important remark is that a sig-
nificant resistive wall impedance increase is to be expected
in case of closed orbit deviations.

CONCLUSION

The question if outside equipment contributes to the cou-
pling impedance has been answered by a numerical analy-
sis. A numerical method using power loss has been suc-
cessfully validated for the transverse impedance and ap-
plied to the elliptical SIS100 pipe including outside equip-
ment. Different results for the transverse impedance of dif-

10
3

10
4

10
5

10
6

10
7

f[Hz]

10
2

10
3

10
4

R
e
{ Z

x

} [
Ω
m
−
1
]

Plain Elliptic Pipe
Attached Cooling Tubes

Box κ=104 S/m + Insulated T.

Box κ=104 S/m + Attached T.

Figure 7: Horiz. imp. of proposed SIS100 pipe setups
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Figure 8: Vert. imp. of proposed SIS100 pipe setups

ferent setups occur only at extremely low frequencies, i.e.
below the range reachable by the specified betatron tunes.

For the longitudinal impedance the numerical method
has to be restricted to the frequency range for which ra-
dial and axial model coincide. The revolution frequency of
SIS100 provides the validity of the method to calculate the
beam induced heat load. The calculated beam induced heat
load is negligibly small compared to the heat load during
the magnet ramp.

The transverse impedance in the relevant frequency
range cannot be reduced since this needs a change of the
pipe itself. The applicability of a feedback system will be
discussed in future.
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