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EkasicF at 9 GHz. Furthermore a measured point with 
waveguide method is displayed at the same frequency [6]. 

These results show that using the coaxial method we 
can investigate a wide range of frequencies with only one 
measurement set-up (see Fig. 6) and furthermore that 
coaxial and waveguide method give similar results (see 
Figs. 7 and 8).   

 

Figure 6: Measurements of real permittivity and loss 
tangent for SiC CerasicB1. 

Figure 7: Measurements of real permittivity and loss 
tangent for SiC EkasicF 

Figure 8: Contour plot for SiC EkasicF at 9 GHz. 

CONCLUSION AND OUTLOOK 
The coaxial method with its simple set-up and 

straightforward transmission line modeling has been used 
to characterize dielectric materials. Before starting 
measurements the feasibility of the method was 
demonstrated in virtual environment (see. Fig. 5). First 
results have been presented in a wide range of frequencies 
for CerasicB1. The EkasicF has also been measured and 
successfully benchmarked with the waveguide method  in 
some frequency ranges. 

One of the advantages with respect to the waveguide 
method is its wide range of applicability in terms of 
frequency, instead, one of the big limitations is the air-gap 
between the sample and the inner conductor due to 
machining limitations. The possible air-gap is taken into 
account not only in 3D EM simulations but also in the TL 
model. During measurements some high order modes 
have been noted and they can be suppressed by using 
different shapes for the sample under test. Measurements 
on new shape samples and new materials such as SiC 
EkasicP and aluminum nitride (AlN) have been planned 
[7].  

Also measurements on ferrite materials have been done 
but the post-processing is much more complicated and 
requires further work. 
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