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Abstract

Kicker magnets are usually significant contributors to
the beam coupling impedance of particle accelerators. An
accurate understanding of their impedance is required in
order to correctly assess the machine intensity limitations.
The field matching method derived by H. Tsutsui for the
longitudinal and transverse dipolar (driving) impedance
of simple models of kickers in the ultrarelativistic regime
was already extended to the non-ultrarelativistic case, and
to the quadrupolar (detuning) impedance in the
ultrarelativistic case. This contribution presents the
extension to the quadrupolar impedance in the non-
ultrarelativistic case, as well as benchmarks with other
available methods to compute the impedance. In
particular, all the components of the impedances are
benchmarked with (1) Tsutsui's model, ie. in the
ultrarelativistic limit, (2) the model for the flat chamber
impedance recently computed by N. Mounet and
E. Métral, in the case of finite relativistic gamma, and
with (3) CST Particle Studio simulations.

INTRODUCTION

Kickers can be major contributors to the total beam
coupling impedance and cause of heating issues in
particle accelerators [1]. Previous studies were done in
order to compute the impedance related to these devices.
B. Zotter and E. Métral computed the impedance of a flat
chamber [2] using Yokoya factors [3], valid for f =1
and good conductor boundaries, but, in order to take into
account the specific quadrupolar part of the impedance of
kickers made of dispersive material, it turned to be
necessary to use Tsutsui’s model for the longitudinal [4],
transverse driving [5] and detuning impedances [6]. In the
frame of this model, Tsutsui’s model was recently
extended for machines operating in the non-
ultrarelativistic regime (i.e. p < 1) as the case of the Rapid
Cycling Synchrotron ring (RCS) in the China Spallation
Neutron Source (CSNS) [7]. In this contribution this latter
theory is extended to the calculation of the quadrupolar
transverse impedances.

FIELD MATCHING METHOD

The Field Matching Method is commonly used to deal
with discontinuities and multi-layer problems. In our case
we will consider the geometry reported in Fig. 1.

The beam is a point-like charge travelling at the centre
of the kicker exciting an electromagnetic (e.m.) field both
in vacuum and in ferrite.
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Figure 1: Kicker simplified geometry. The structure is
infinitely long in the z direction.

To compute this field, we could solve the Maxwell
equations in presence of the source current (the beam) but
it turns out to be difficult due to singularity problems. In
order to overcome this limitation a primary field is
computed from the source beam, the most simple as
possible. This primary field plus an unknown scattered
field both in vacuum and ferrite is then matched at the
separation between layers. This will compensate the
primary field satisfying the boundary conditions.
Eventually, in order to compute the impedance we need
to:

e  Set the correct source beam and its primary field.

e Divide the geometry in sub-domains in which the
scattered e.m. fields are calculated.

e Match the e.m. fields at the boundaries of each
domain.

e  Compute the impedance.

Primary Fields

In order to compute the quadrupolar impedance, a
single point-like source current placed at the geometrical
centre of the kicker moving with velocity v = fc in
vacuum can be considered. As primary fields X*) we will
consider the e.m. fields generated by the charge in free
space (as written above, this is not a solution of our
problem but a “first guess” that will be compensated by
the scattered field in order to satisfy the boundary
conditions). Solving Maxwell equations [8] leads us to:
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where k, = w/yv, y = 1/4/1 — B2 is the relativistic factor,
Zo =377 Q the characteristic vacuum impedance, q =
1.602 x 107'° C the proton charge, K, respectively the
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modified Bessel function of order 0 and 1. Taking into
account the parallel PEC plates at x = + a, i.e. adding the
image currents, one gets:
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where 1, =/ (x — 2ma)? + y2.
Scattered Fields

In vacuum, the e.m. fields X are solution of the
Helmholtz equation taking into account the PEC
boundary conditions at x = + a. We have:
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where k = w/v. The eigenvalues are k,, = 2n + 1)n/2a
with € (0,+o0) . The k,, are instead constrained only by
the separability condition k;,> + kp,* = —k,%.

In ferrite the em. fields XU have analogous
expression. Imposing the PEC surfaces at y = +(b +t) =
+d we get:
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where ¥ =y —d and k,=w/c. The eigenvalues are
gin = 2n+ n/2a. The g,, are instead constrained only
by the separability condition gi,2 + gon? = kiu,& — k2.
The material characteristics are plugged in the
permeability p = pop, and permittivity e = g¢, .

Matching

Once the e.m. fields are derived we can apply the
continuity relations [9] on the separation layers vacuum-
ferrite at y = +b. We have a set of 4 x-dependent
equations in 4 n-vector unknowns 4, By, Cp, Dy,.
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The system can be solved expanding the source term in
Fourier series and matching each modal component of the
fields. The full expressions of the coefficients were
derived in [7].

Quadrupolar Impedance Calculation

To get the transverse quadrupolar (or detuning)
impedance we have to displace a test particle with respect
to the beam trajectory on (X, y)=(0, 0) by a quantity ¢ in
the plane of interest [10].

The impedance is given by:
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where ¢ is the displacement of the test particle with
respect to the source beam trajectory and P = g¢ is the
dipole moment. Since V X E = —jwuH we get:
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All these formulas have to be evaluated respectively in
x =& and y = §. Substituting the field E, in vacuum
from the first equation in Eq. (3) we eventually obtain the
formula for the detuning impedance:
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It is worth to notice that the two components do not
cancel each other if y < oo, even if their difference could
be negligible (see also [11 Eq. (22)] and Fig. 2 in the next
section).

APPLICATIONS AND BENCHMARKS

The current model was already applied in the past to
compute longitudinal and dipolar impedances: the non-
ultrarelativistic formulae obtained in [7] were compared
with the ultrarelativistic case analysed by Tsutsui. In Fig.
2 we present a comparison for the quadrupolar impedance
of the MKE.61651 SPS kicker with various relativistic {3,
showing the expected convergence to the ultra-relativistic
model for = 1.
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Figure 2: Convergence of the horizontal (top) and vertical
(bottom) quadrupolar component to the ultra-relativistic
model. The coloured real part (full thick lines) and
imaginary part (thin dashed line) are given for different
values of B, converging to the black lines given by the
ultra-relativistic Tsutsui’s model.

The model was successfully cross-checked with the flat
chamber model developed by N. Mounet and E. Métral
[11] pushing the half width “a” to infinity (see Fig. 3).
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Figure 3: Mounet/Métral - Wang model [7] vertical
quadrupolar impedance comparison for f values of 0.54,
0.9 and f = 1 for MKE.61651. Real part in thick lines,
imaginary part in dashed thin lines.

Another comparison was done with CST Particle
Studio which recently supports open boundaries with
B <1 (Fig. 4). The agreement in terms of quadrupolar
wake potential is good but further cross-checks are
foreseen in order to explain the little discrepancy.

After these successful benchmarks, we show in Fig. 5
the transverse impedances computed at injection for the
different CERN machines: PSB (B = 0.34), PS
(B~=0.91),SPS and LHC (B~ 1).
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Detuning Wake potential
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Figure 4: CST — Wang model [7] transverse quadrupolar

wake potential comparison for SPS kicker MKE.61651
for B values 0.34, 0.8 and 1.

310 MEE 61651 Zy got

RelZ, 4a)
0

Impedance in (¥/m

In(Zy o)
PP M 2.

SPS-LHC

10° 10' 10° 10* 10"

Frequency in Hz

Figure 5: Detuning horizontal impedance for CERN PSB,
PS, SPS-LHC machines for SPS kicker MKE.61651.

These plots reveal a decrease in the imaginary part of
the impedance and a local increase of the real part at high
frequencies with B.

CONCLUSION

The impedance for a 2D simple kicker model was
successfully extended and benchmarked with theory and
numerical simulations for all the components of the beam
coupling impedance in the non ultrarelativistic case.
Further extension to the 3D model is foreseen.
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