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Abstract
Within a continuous program the BESSY II

undulators are prepared for Topping-Up operation. The
U125 planar hybrid undulator has a period length of 125 
mm and a pole width of only 60 mm. The horizontal 
defocusing of the 1.7 GeV e-beam may result in a 
significant reduction of the horizontal dynamic aperture,
reducing the injection efficiency when injecting into the
closed gap. The dynamic field integrals are derived from
a 2D-Fourier decomposition of the 3D-field. An analytic 
description of the dynamic field integrals based on the
Fourier coefficients is presented. Magic fingers have
been installed in order to minimize the dynamic field
integrals and to enlarge the good field region of the
device.

INTRODUCTION
The three dimensional magnetic fields of undulators

operated in low or medium energy storage rings produce 
so-called dynamic kicks which may have a significant 
impact on the electron beam dynamic. Though the 
straight line integrals are small the integrals along the 
wiggling trajectory can be large, in particular for APPLE
II type undulators [1] or high field, long period wigglers
[2]. The effects scale inversely with the square of the
electron energy. Careful tracking studies are required 
and a reduction of the dynamic effects is an important 
issue for top-up operation (injection into closed gaps).

Recently, a particle tracking scheme which is based on 
an iterative solution of a Taylor series expanded 
Hamilton-Jacobi-equation has been published [3]. This
method yields a direct transformation of the particle
coordinate variables from a generating function, leading 
to a symplectic variable transformation. Analytic fields
are needed for this tracking algorithm. In [3] field
expressions for APPLE II undulators are given. 
Furthermore, analytic expressions for the dynamic 
effects of APPLE II type undulators operating in
arbitrary modes of polarization are derived.

It is worth noting that the formalism can be applied
also to other 3D-magnetic fields which are not periodic
in the direction of electron beam propagation.

In this paper we apply the formalism to the wiggler
U125-2 which is installed in the storage ring BESSY II.
The 4m- undulator has a period length of 125mm and a
pole width of only 60mm, including two 4mm chamfers 
in transverse direction. The pole shape causes dynamic 
field integrals of up to 4.5Tmm. Permanent magnet
shims have been installed which reduce the dynamic 
field integrals within a transverse region of ±18mm from 
0.58Tmm down to 0.02Tmm.

AN ORTHOGONAL BASIS FOR
PERIODIC FUNCTIONS OF THE 

MAXWELLIAN TYPE
The symplectic tracking algorithm of [3] requires an 

analytic magnetic field description. We are looking for a 
complete set of functions describing arbitrary 3-
dimensional undulator, wavelength shifter or other 
accelerator magnet fields. Once, a single component is
known the orthogonal components are derived with
Maxwell’s equations. In a first step we search for an 
expression of the vertical component By(x,z) in the 
accelerator midplane (x-z-plane). z is the propagation 
direction of the electron beam.

We start with the functional properties in the
midplane. It can be shown that a set of functions

)()( zxF ikiik forms a basis for all continuous 
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basis on [c,d]. In particular, )()(
~

zxF kiik
is a basis

for all continuous functions on [a,b]x[a,b] if )(xi is a 
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The trigonometric functions sin(nx) and cos(mx), 

...0,mn form a basis on the interval [-π,+π] for all

continuous functions g(x) with )()( gg as can be

concluded from the Weierstrass approximation theorem.
Thus, the functions cos(kxnx)cos(kzmz), sin(kxnx)cos(kzmz),   
cos(kxnx)sin(kzmz), sin(kxnx)sin(kzmz) form a basis on the 
interval S=[-λx0/2, λx0/2]x[-λz0/2, λz0/2} and the general
expression for By is:
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where λx0 and λz0 are the ranges for the transverse and
longitudinal Fourier decomposition of the field. In the 
general case, λx0 and λz0 are chosen such that the field is
zero at the boundaries of the interval S. Concentrating on 
this area we can ignore the finite field values outside
which are due to the translational field symmetry in x
and z. In an undulator or wiggler structure with many
periods the periodicity within the device can be included 
to simplify the expressions (neglecting endpole effects):
Now, we have By(z0)=By(z0,z0+λ0) where λ0 is the 
undulator period. Without loosing generality we assume
By(z)=By(-z) and we get the simplified fields:
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l is the number of magnets per period (four for a
conventional pure permanent magnet undulator). Using
the magnetic field properties of zero rotation and zero 
divergence the ansatz )(),(),,( ,, yHzxBzyxB ijijyijy

yields the differential equation: 222
~

2 /)( yHHkk ijjxi
. 

which is solved by the general expression:

)exp()exp( ~
,2~

,1 ykcykcH jyijyiij
(3)

Undulators which are lacking a midplane symmetry
(e.g. HELIOS at the ERSRF [4]) can be described in this
way. In case of a midplane symmetry, )()( yByB yy

, 

we get )cosh( ~
,

ykcH jyiij
which leads to the well-

known Halbach expression. Equation (4) describes all
Maxwellian functions which have midplane symmetry, 
translational symmetry in x- and mirror symmetry in z-
direction with arbitrary accuracy.
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The sin-terms are required only if the fields are not
symmetric with respect to the z-y-plane. This is the case 
for wigglers with transversely displaced poles or APLPE 
II undulators in the inclined mode. The other field 
components are derived from By using Maxwell’s 
equations.

GENERAL EXPRESSIONS OF
DYNAMIC FIELD INTEGRALS

In the following we concentrate on fields of the form of 
Eq. (4) though the arguments can be extrapolated to the
more general form of Eq. (1) as well. A vector potential
function (Ax, Ay, Az=0) is derived from Eq (4):
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This vector potential is used in a symplectic, precise 
and fast tracking algorithm as described in [3]. The
vector potential of Eq. (5) defines a potential function 
[3], 2/)( 22

002 dzAAf yx
, which is used to derive 

explicit expressions for the transverse kicks of particles, 

passing a section fz of the undulator parallel to the 

central axis. The kicks are given as x/f002x
and 

y/f002y
. For the BESSY II U-125-2 undulator the 

By fields are symmetric in x and we drop the sin-terms in 
x. Averaging over an integer number of periods we get 
the transverse kicks:
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The kicks of Eq. (6) are useful for the dimensioning of
compensating shims and for the estimation of tune shifts.
The dynamic kicks are sometimes evaluated from the 
similar but generally incorrect formula:

dzdz
yx

B
dzBdz

yx

B
dzB

B
fz z

x
z

x

z yz

yyx
0

'

0

'

0

'

0

'

02/
//)(

1~ (7)

For illustration we apply a simple planar field expansion 
with an arbitrary, longitudinal phase term , as derived 

from a scalar potential )cos(),( zkyxVV z where

V is a function of the type )yksinh()xkcos(B yx0
. 

Derivatives of V with respect to x or y are indicated by 

the index. Integration over an integer longitudinal period 

f
z yields,

))(sin21)((
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~ 2

22 xxxyxy
z

f
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kB

z (9) 

and similar for 
y

~
. The achieved integrated kick per

period is dependent on the arbitrary phase value , 

introduced by the specified integration limits. The 
transverse focussing, however, should be independent on 
the phase . For a planar undulator the validity of Eq.

(7) is limited to the specific case of 0 where it

delivers the same result as Eq. (6). In contrast, the 
potential function 002f will result in phase independent

x - and y -kicks without any constraints.

THE U125-2 WIGGLER
In the following we consider the dynamic field integrals
of the BESSY II U125-2 wiggler. We use Eq. (4) for the
fields neglecting the sin-terms. The Fourier coefficients
are determined from RADIA [5] simulations. The 
transverse profile of the vertical field is evaluated at m z-
positions. For each profile a Fourier decomposition is
performed yielding the quantities Ci,j. The Fourier
coefficients ci,j. which are related to the harmonics in
longitudinal direction are derived via solving a set of  
linear equations (Eq. (10)). In order to minimize 
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numerical noise the z-positions of the transverse profiles 
have been chosen such that the harmonics j have their
maxima at the position zj. The analysis of the BESSY II 
U125-2 transverse field profiles shows a strong 3rd

harmonic (Fig. 1).

Figure 1: Total B and individual field harmonics of the y

BESSY II U125-2 plotted versus the z-direction.

Though the 3rd harmonic amounts to 14% of the 1st

harmonic the contribution to the dynamic kicks is only
0.48% because it is scales with the square of the field 
and with the factor 2

~/1 jk . Off-axis the contributions of

the higher harmonics increase faster as compared to the
1st harmonic but they are still small (1.0% for particles
5mm out of midplane). Nevertheless, the higher field 
harmonics have to be evaluated in order to derive the 1st

harmonic (Fig. 2).

Figure 2: Dynamic field integrals of the U125-2 installed 
at BESSY II at smallest gap of 15.7mm. The dynamic
field integrals have been determined from m=1, 2 and 3
transverse profiles yielding the harmonics 1, 1 and 3 and 
1, 3 and 5 (Eq. (6)). The 3rd harmonic contributes only 
little, however, it must be determined from Eq. (6) with
m=2 for a correct evaluation of the 1st harmonic.

The U125-2 is a quasiperiodic device [6] which 
reduces the integrated dynamic effects. The values in 

field integrals in Figure 2 have been compensated in the
midplane (Figure 3) using an array of permanent magnets 
with cross sections of 4x4 mm2 and variable thickness in
longitudinal direction (so-called magic fingers). Due to 
space limitations the magic fingers are installed only at 
the downstream end (Figure 4). The block at the right 
hand side is used for a coarse compensation. The length
of all magnets is 4mm. The smaller array on the left is a 
standard BESSY II magic finger housing magnets with
thickness variations of 0.1mm for fine tuning. 

Figure 3: Dynamic vertical field integrals (dyn) before
shimming (black) and with shims (red). The horizontal 
field integrals due to the shims are indicated in blue.

Figure 4: Permanent magnets for the compensation of 
dynamic field integrals at the downstream end of the 
BESSY II U125-2 (for details see text).
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Figure 2 include this effect. The kicks of the dynamic 
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