
SUPERCONDUCTING PLANAR 
UNDULATOR DEVELOPMENT IN THE UK 

J. A. Clarke1, 2, V. Bayliss3, T. Bradshaw3, A. Brummitt3, G. Burton3, M. Courthold3, M. Hills3, 
D.J. Scott1, 2*, B. J. A. Shepherd1, 2, S. Watson3, and M. Woodward3. 

 1 STFC Daresbury Laboratory, Warrington, UK 
2 Cockcroft Institute, Daresbury Science and Innovation Campus, Warrington, UK 

3 STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK

Abstract 
Superconducting undulators promise higher peak fields 

on axis than any other technology but they are still not a 
mainstream solution for 3rd or 4th generation light sources. 
A team within the UK is developing the design of a short 
period, narrow aperture, superconducting undulator that is 
planned to be installed and tested in the Diamond Light 
Source (DLS) in 2014. This paper will describe the main 
parameters of the undulator and the key design choices 
that have been made. Recent progress is then described in 
the areas of magnet modelling, mechanical design, 
cryogenic design, and prototyping. Finally, the next steps 
are described. 

INTRODUCTION 
The UK has developed considerable superconducting 

undulator expertise over recent years with the extensive 
design and prototyping of helical undulators for the 
International Linear Collider (ILC). These short period, 
relatively high field magnets are extremely challenging 
and the successful manufacture and test of a 4 m long 
helical undulator cryomodule was a major milestone for 
the ILC project [1]. We are now applying the skills and 
knowledge gained from this helical undulator magnet 
project in order to develop a planar superconducting 
undulator that is suitable for 3rd and 4th generation light 
sources. In particular we aim to design, fabricate, and test 
a 2 m long superconducting planar undulator that will 
then be installed into DLS in 2014. 

Parameters 
The key parameters of the undulator have been 

developed in collaboration with DLS to ensure that the 
prototype will be compatible with installation into that 
facility with little disruption to the existing users. In 
particular the magnet gap has been determined by 
ensuring that the new fixed gap aperture set by the 
undulator is equivalent to the existing lowest fixed gap 
aperture currently installed. The current limiting fixed gap 
vertical aperture is 8 mm over a 5 m long straight section. 
Scaling this down for a 2 m long magnet installed in the 
centre of a 5 m straight defines the vertical aperture to be 
5.4 mm. This should ensure that the impact on the 
operation of DLS is negligible in terms of reduced 
aperture to the electron beam. 

To select the undulator period and field strength a 
number of criteria were considered. These included: 

 Maximising the flux and brightness at high photon 
energies (25 and 40 keV) 

 Minimizing the undulator harmonic at these high 
photon energies 

 The requirement to provide continuous tunability 
from 6.5 keV and higher 

The selected optimum undulator parameters are 
summarized in Table 1. It is estimated that if these 
parameters are achieved the users will receive an increase 
in flux of ~15 times and brightness of ~20 times at 
40 keV when compared to a standard in-vacuum 
undulator. 

Table 1: Undulator Parameters 

Magnet Length 2.0 m 

Period 15 mm 

Peak Field on Axis 1.29 T 

K 1.8  

Required Phase Error <3 ° 

Magnet Pole Gap 7.4 mm 

Vertical Beam Aperture 5.4 mm 

SC Wire Dimensions 0.765 x 0.375 mm 

Operating Current 480 A 

SC Material NbTi  

Cu:SC Ratio 0.9:1  

Peak Field in the SC 3.3 T 

Turns per Layer 6  

Number of Layers 11  

Magnet Operating Temperature 1.8 K 

Beam Tube Temperature 12 – 16  K 

Design Choices 
Despite the clear advantages of superconducting 

technology in the generation of very high magnetic fields, 
the generation of a relatively modest field (1.29 T) in a 
magnet with 15 mm period and magnet pole gap of 
7.4 mm using this technology is extremely challenging. 
The SC material must be operated close to the quench 
limit to achieve these fields, leaving little safety margin. 
We have made a number of design choices in order to try 
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using a laser level, will be manipulated until parallel with 
the datum plane as required. The whole assembly will 
then be hung from the outer cryostat using adjustable 
rods; these create externally measureable reference points 
with which the position of the magnet can be determined 
and thus aligned to the beamline.  

Cryogenic Design 
The cryogenic design for the superconducting undulator 

is based on the use of closed cycle refrigerators. In order 
to achieve the required critical current from the 
superconductor the bath temperature needs to be 
approximately 2 K. This is achieved by using a 
continuous flow cryostat in the central turret. A series of 
heat exchangers, linked to the refrigeration stages, returns 
the circulating helium to the bath where it is expanded 
through a JT valve. For the temperature specification 
16 mbar will be required on the effluent side of the 
helium expansion. In order to meet the heat loads a 
minimum helium flow of 10 mg/s is required – this 
corresponds to a stp flow of about 3.4 litres/min. This 
circulation will be provided by a Leybold SC30D scroll 
pump. Cooling pipes through the undulator deliver the 
liquid helium to the cold mass of the magnet. The main 
two stage refrigerator also provides intermediate cooling 
for the High Temperature Superconducting (HTS) current 
leads. The design allows for the turret and 2 K continuous 
flow cryostat system to be tested off the main undulator 
cryostat prior to final integration. 

The beam tube will be operated at 12 to 16 K – at this 
temperature the maximum residual resistance ratio for the 
material is achieved and there is little benefit in cooling to 
lower temperatures. The load on the beam tube is 
dominated by the wakefield heating from the beam and 
could be as high as 40 W. There is much uncertainty in 
this figure and so a dedicated test cryostat will be 
installed into DLS in November 2011 in order to make 
systematic measurements of the actual heat loads due to 
the electron beam. Cooling of the beam tube is achieved 
by the use of two closed cycle refrigerators (Sumitomo 
SRD415) one at each end of the undulator. The first stage 
of these refrigerators also cools the ends of the 55 K 
radiation shields. The beam tube also partly acts as a 
thermal radiation shield for the magnet system. 

The current leads will be composed of copper from 
room temperature to 55 K and then HTS from 55 K to 
4 K. From there NbTi will be used into the main coil. The 
heat load on the two-stage cryocooler in the turret is 
dominated by the heat leak down the current leads – this 
will be approximately 34 W. 

Trial Windings and Prototypes 
A small trial section of the magnet was produced using 

tightly tolerance plates. These plates were put together 
and wound, this allowed us to try out different insulators 
and to check the winding pattern. This test piece was later 
sectioned and that confirmed that the accuracy and pattern 
of the winding was good. We also tested the insulation 
used between the windings and the former. The insulation 

was tested both for electrical and mechanical properties. 
The assembly and accuracy achieved with these plates has 
influenced the design of the magnet significantly. 

A ~300 mm prototype of the magnet will be produced 
to the best accuracy that can be achieved using 
conventional engineering techniques. This will be wound 
and tested to give us a better understanding of the 
achievable tolerances of the final magnets. The 
programme for the manufacturing will be set for a 3 axis 
CNC milling machine. The prototype will be measured at 
different stages of the manufacture to ensure its accuracy. 

FUTURE PLANS 
The next step will be the manufacture and test of a 

~300 mm long prototype undulator. This will be used to 
confirm the mechanical and magnetic design, the winding 
technique, and the potting arrangement. Comprehensive 
mechanical measurements will be carried out on the 
former and the complete magnet to check whether the 
required tolerances have been achieved. 

This short prototype will also be measured 
magnetically in a vertical test cryostat. The requirements 
of the magnet measurement system have recently been 
established and these are now being used in the detailed 
design phase of the measurement system. A transverse 
array of Hall probes will be used so that the magnetic 
field can be measured simultaneously across the 
horizontal plane of the undulator, providing useful 
information about the multipole components. The 
calibration requirements of these Hall probes is being 
carefully considered now. 

In parallel to the short prototype, the cryogenic system 
will also be assembled allowing the 1.8 K system to be 
proven offline. This cryogenic system will use the actual 
services turret of the final cryomodule, providing as 
complete a test as possible and also minimising the future 
effort required during assembly of the complete system. 

Once the prototype magnet and cryogenic system have 
been fully proven construction of the final magnet will 
commence. The current plan assumes installation of a 
fully tested undulator into DLS in 2014. 
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