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Abstract 
Inspired by recent developments in low-loss overmoded 

components and systems for ultra-high power RF 
systems, we explored several overmoded waveguide 
systems that could function as RF undulators. One 
promising structure is a corrugated waveguide system 
operating at the balanced hybrid HE11 mode. This is a new 
application for that mode. Initial calculations indicate that 
such a system can be operated at relatively low power 
levels (~50	MW) while obtaining large values for the 
undulator parameters 1~ܭ. RF surface fields are typically 
low enough to permit superconducting operation. This 
technology can realize an undulator with short 
wavelengths and gives dynamic control of the undulator 
parameters including polarization. We introduce the 
scaling laws governing such structures, and establish the 
superiority of the balanced hybrid HE11 mode by 
comparative analysis. The scaling laws are verified 
through exact simulations. High quality factor of HE11 
mode is demonstrated through measurements of a 
prototype design. Finally, a novel design is presented with 
low surface fields. 

INTRODUCTION 
The dynamic RF undulators promise to impart a 

convenient control over the polarization and wavelength 
of the FEL radiation. Moreover, the large transverse 
radius of the overmoded waveguide weakens the effect of 
the wakefields [1-5]. 

In our analysis, we assume an undulator to be in the 
form of a circular cylindrical RF cavity, with either a 
smooth conducting wall or a finite constant impedance 
wall, of length ܮ and radius ܽ. The device lies 
symmetrically about the z-axis along which we expect the 
electron beam to travel. 

Following notation is used for various RF parameters:  
frequency (݂), angular frequency (߱ =  free space ,(݂ߨ2
RF wavelength (ߣ), propagation constant along z-axis (ߚ), 

and free space wavenumber ݇ = ଶగఒ . The normalized 

length is defined as ܮ෨ = ௅ఒ. However, to facilitate the 

comparison among various modes, we define the 
normalized radius as ෤ܽ = ௔௔೎ ≥ 1, where ܽ௖ is, exactly (for 

TE1n) or approximately (for HE1n), the mode cutoff 
radius. In terms of the normalized radius, the propagation 
constant can be expressed as: ߚ = ଶ	గ	஛ √1 − ෤ܽିଶ                                                        (1) 

The modes of interest for any on-axis RF undulator, 

with cylindrical symmetry, are TM1n, TE1n, and HE1n 
modes.  For any given set of parameters, TE1n modes turn 
out to be superior to TM1n modes. In this paper, we 
present the scaling laws for the linearly polarized TE1n 
and HE1n modes. A comparison of these modes 
demonstrates the promising features of the HE11 mode. 

We also present the cold test results of a prototype 
corrugated cavity, and show that a high quality factor (ܳ଴) 
can be achieved for a HE11 mode.  In the end, we present 
our recent design of an RF undulator that exhibits low 
surface fields on the end walls. 

ZERO-IMPEDANCE-ADMITTANCE 
SURFACE FOR BALANCED HYBRID 

MODES 
For balanced hybrid modes, the impedance and 

admittance of the constant impedance wall should be 
vanishingly small [6-7]. In this case, the transverse field 
components of HE1n modes become proportional to ܬ଴ሺݏሻ, 
the Bessel function of order 0.  This gives a unique 
feature to the balanced hybrid HE1n modes that all its 
transverse fields are more concentrated on the axis and 
tend to vanish near the surface. 

Such a surface can be implemented by transverse 
corrugations of a metallic cylindrical wall, as shown in 
Fig. 1.  

 

Figure 1: Longitudinal cross-section of a constant 
impedance cylindrical surface. 

In Fig. 1, the corrugation period ݌ is less than ߣ 2⁄ , 
hence the slots can only support TM fields with field 
components,  ܧ௭, ܤఝ, and ܤఘ. Thus, at ߩ = ఝܧ ,ିܽ = 0, 
while there is a finite magnetic field ܤ௭. Thus the 

normalized surface impedance ෨ܼ = −݅ ቀ ாക௖	஻೥ቁఘ→௔ష 

vanishes. Moreover, it can be shown, that for ݇ܽ ≫ 1, the 

normalized surface admittance ෨ܻ = 			݅ ቀ௖	஻കா೥ ቁఘ→௔షalmost 

equals −cot ݇Δܽ [6] and hence vanishes for slot depth ܽ߂ ≈ ఒସ. In this way a so called zero-impedance-

admittance surface is obtained. In practice, the value of ݌ < ߣ 2⁄  is selected to yield resonant condition for the 
 ___________________________________________ _____________ 
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desired frequency. The value of ܽ߂ can then be tuned 

around 
ఒସ for optimal results, like lower power loss and 

surface fields. The slot thickness ݌߂ needs to be just large 
enough to maintain the minimum aspect ratio for 

mechanical considerations. Generally, ݌߂ = ఒଵ଺ is a good 

choice. 

SCALING LAWS 
In the context of insertion devices, it seems appropriate 

to define following scaling factors for fields, energy, and 
power in terms of the undulator  parameter ܭ, normalized 
RF wavelength λ෨ = λ 1	cm⁄ , and normalized conductivity σ෥ (= 1 for copper). E଴ = 	ߨ4 ௠	௖௘ 	 ௖ఒ ܭ	 = 642	MV	mିଵ	ߣሚ	ିଵ	ܭ	(2)                  B଴ = −݅ E଴ c⁄ = −݅	2140	mT		ߣሚ	ିଵ	ܭ	(3)                  U଴ = ଶగఓబ ቀ௠	௖௘ ቁଶ ଶܭ = 	14.5	Joules		mିଵ			ܭଶ	            (4) P଴ = ߨ8 ቀ௠	௖ఓబ	௘ቁଶ ටቀ గ	௙	ఓబఙ෥	ሺହ.଼	ଵ଴ళ	ௌ	௠షభሻ	ቁܭଶ            						= 2.089	MW			ߪ෤	ିଵ ଶ⁄ ିଵ	ሚߣ	 ଶ⁄  ଶ     (5)ܭ	

Here ݉ and ݁ are, respectively, electron mass and 
charge, ܿ is the speed of light in vacuum, and ߤ଴ is the 
free space permeability.  

Balanced Hybrid HE1n modes 
Observing the fact that ݑଵ௡ ≈  for a (ሻݏ଴ሺܬ zeros of)଴௡ݏ

Hybrid balanced HE1n mode, we define normalized radial 
coordinate ݏ and normalized radius ෤ܽ as ݏ = 	ఘ௔ ଴௡ and  ෤ܽݏ = ଶగ		௦బ೙ ௔ఒ. For ෤ܽ ≥ 2, we can write following approximate 

expressions for a hybrid balanced HE1n mode: 

Propagation constant: ߚ ≈ ଶ	గ	ఒ ቀ1 − ଵଶ ෤ܽିଶቁ                 (6) 

Undulator wavelength: ߣ௨ ≈ ఒଶ                  (7) 

Cutoff radius: ܽ௖ ≈ ௦బ೙	ଶ	గ	  (8)                            ߣ

Field components (phasor form with implicit ݁௜ఠ௧): ܧ௭ ≈ 			 	଴ܧ ෤ܽିଵܬଵሺݏሻ	ܿݏ݋ ߮ ݏ݋ܿ ௭ܤ (9)                               ݖߚ ≈ 	଴ܤ			 ෤ܽିଵ	ܬଵሺݏሻ ݊݅ݏ ݊݅ݏ	߮ ఘܧ (10)                 ݖߚ ≈ ଴ܧ− ቀ1 − ଵସ ෤ܽିଶቁ ሻݏ଴ሺܬ ݏ݋ܿ ߮ ݊݅ݏ ఝܧ (11)                ݖߚ ≈ 			 ଴ܧ ቀ1 − ଵସ ෤ܽିଶቁ ሻݏ଴ሺܬ ݊݅ݏ ߮ ݊݅ݏ ఘܤ (12)                ݖߚ ≈ ଴ܤ			 ቀ1 − ଵସ ෤ܽିଶቁ ሻݏ଴ሺܬ ݊݅ݏ ߮ ݏ݋ܿ ఝܤ (13)                ݖߚ ≈ ଴ܤ			 ቀ1 − ଵସ ෤ܽିଶቁ ሻݏ଴ሺܬ ݏ݋ܿ ߮ ݏ݋ܿ  (14)               ݖߚ

Stored energy per unit length: ܷ ≈ ܷ଴ ௃భమሺ௦బ೙ሻ௦బ೙మଶ ቀ ෤ܽ + ఍భ௦బ೙ቁଶ  					≈ ܷ଴ ෤ܽଶ	ሺ݊ − 0.25ሻ                                               (15) 
End wall losses: ௟ܲ௢௦௦೐೙೏ ≈ ଴ܲ 	௃భమሺ௦బ೙ሻ௦బ೙మଶ ቀ ෤ܽଶ − ଵଶቁ  																≈ ଴ܲ	ሺ݊ − 0.25ሻ ቀ ෤ܽଶ − ଵଶቁ		                         (16) 

Cylindrical wall losses: ௟ܲ௢௦௦೎೤೗ ≈ 	ଶߞ ଴ܲ	ܮ෨	 ෤ܽିଵܬଵଶሺݏ଴௡ሻݏ଴௡ߨ ≈ 2 ଴ܲ	ܮ෨	 ෤ܽିଵ     (17) 

Peak surface fields: ܧ௣௘௔௞_௦௨௥௙ ≈ 	଴ܧ ෤ܽିଵܬଵሺݏ଴௡ሻ                               (18) 

௣௘௔௞_௦௨௥௙ܤ ≈                                              (19)	଴ܤ
In Eq. (15) and (17),  ζଵ~1 and ζଶ~1 are adjustment 

constants, and their values depend on the particular 
implementation of the zero-impedance-admittance 
cylindrical wall of the cavity. 

TE1n modes  
For the sake of comparison, we present here the 

corresponding expressions for the stored energy per unit 
length and the losses for TE1n modes. Here, the 
normalized radius a෤ is defined with respect to the cutoff 
radius of the corresponding TE1n mode. ܷ = ܷ଴	 ෤ܽଶ	ܬଵଶሺݏᇱଵ௡ሻ൫	ݏᇱଵ௡ଶ − 1		൯  

    ≈	ܷ଴	 ෤ܽଶ	ሺ2݊ − 0.68ሻ			                                         (20) ௟ܲ௢௦௦೐೙೏ 	= ଴ܲ	ሺ ෤ܽଶ − 1ሻ	ܬଵଶሺݏᇱଵ௡ሻ൫	ݏᇱଵ௡ଶ − 1		൯  
               ≈	 ଴ܲ	ሺ ෤ܽଶ − 1ሻ	ሺ2݊ − 0.68ሻ                       (21) ௟ܲ௢௦௦೎೤೗ = ଴ܲ	ܮ෨	 ෤ܽ	ܬଵଶሺݏᇱଵ௡ሻݏᇱଵ௡ߨ  

                 ቀݏᇱଵ௡ିଶ + ෤ܽିଶ൫1	 − ≈															  ᇱଵ௡ିଶ൯ቁݏ 2	 ଴ܲ	ܮ෨	 ෤ܽ 	ቀݏᇱଵ௡ିଶ + ෤ܽିଶ൫1	 −  ᇱଵ௡ିଶ൯ቁ   (22)ݏ

 

Balanced Hybrid HE1n versus TE1n modes 
Comparing Eq. (15 – 17) with Eq. (20 – 22), one can 

guess that the HE1n modes do better than the 
corresponding TE1n modes. Fig. 2 presents a comparison 
of TE1n and HE1n modes, in terms of the stored energy (ܷ) 
and the total  losses ( ௟ܲ௢௦௦ = ௟ܲ௢௦௦೐೙೏ + ௟ܲ௢௦௦೎೤೗).  

 

 

Figure 2: Stored energy (ܷ) and total losses ( ௟ܲ௢௦௦) versus 
normalized radius ( ෤ܽ). 
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Here, the TE1n modes correspond to a smooth wall 
cavity, while the HE1n modes correspond to the cavity 
whose cylindrical surface is a constant impedance wall 

determined by the parameters: ܽ߂ = ఒସ ቀ1 + ଵ௞	௔ቁ, ݌߂ = ఒଵ଺, 
and ݌ = ଶగଷఉಹಶభభ. The modes are compared against the 

same values of their respective normalized radii. We have 
chosen: ܭ = ෤ߪ = 1, 	݂ = 11.424	GHz, and ܮ = 1m. The 
dots correspond to the exact solution based on mode 
matching technique [8], while the solid lines are the plots 
of corresponding analytical expressions, Eq. (15 – 17) and 
Eq. (20 – 22) . We choose ζଵ = 0.38 and ζଶ = 0.92 to fit 
the HE11 data. 

It is obvious that the stored energy and the total power 
loss associated with the HE1n modes are generally lower, 
at least for this particular implementation, than that of the 
corresponding TE1n modes. In particular, HE11 mode 
outperforms all the rest, especially due to the lower 
associated power loss. 

PROTOTYPE TEST 
To validate our theoretical findings, we fabricated a 

prototype corrugated wall cylindrical cavity and  
measured the quality factors (ܳ଴) of various modes. The 
design parameters of this cavity are as follows: ∆ܽ =0.280	in, ∆݌ = 0.065	in, ݌ = 0.416	in,	ܽ = 2.066	in, ܮ = ݌24 = 9.984	in, and ߪ෤ = 0.431 (Aluminium). 

Table 1: Quality Factor for various Modes 

Mode Measured Calculated 

HE13 (11.279 GHz) 39,390 46,000 

HE14 (11.308 GHz) 24,950 27,600 

HE11 (11.428 GHz) 105,900 120,000 

HE14 (11.507 GHz) 25,820 29,100 

HE12 (11693 GHz) 67,100 85,600 

Measurements confirm the high quality factor exhibited 
by the HE11 mode. However, all the measured values of ܳ଴ are about 10% less than the calculated values. The 
difference is probably due to the lower value of 
conductivity of the cavity alloy than that of the pure 
aluminum which is assumed for the calculated results. 

UNDULATOR DESIGN WITH LOW 
SURFACE FIELDS 

According to Eq. (3) and (19), the magnetic field on the 
end walls of the undulator can be as high as 815	mT for ܭ = 1, and ߣ = 2.6242	cm. 

To solve the problem of high peak fields on the end 
walls near the axis, we introduce a concave design for the 
end walls which is perpendicular to the local Poynting 
vectors. Fig. 3 shows such a design along with the plots of 
the magnitude of electric (E) and magnetic (H) fields 
along the axis of such an undulator. Such a design can 
help reduce the peak surface field by a factor of  half or 
so. 

 

Figure 3: An optimized design of RF undulator and fields 
along its axis. 

CONCLUSION 
After a brief discussion about the design strategy of a 

zero-impedance-admittance wall to support the balanced 
hybrid HE1n modes, we presented scaling laws for these 
modes and compared them against the TE1n modes. It 
turns out that the HE1n modes have generally lower stored 
energy and exhibit less power loss than the corresponding 
TE1n modes. Especially, the HE11 mode seems to be the 
most promising one. We also presented results of a 
prototype design that exhibited high quality factor for the 
HE11 mode. Lastly, we presented a practical undulator 
design with low peak surface fields on the end walls.  
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