
RECENT TRENDS IN ACCELERATOR CONTROL SYSTEMS

I. Verstovšek#, F. Amand, M. Pleško, K. Žagar, Cosylab, Ljubljana, Slovenia

Abstract
Control Systems play a central role in the daily

operation of accelerator facilities. They also pose unique
challenges during the overall design and realization of the
machine. This paper reviews important recent trends in
the field of accelerator control systems and describes how
they address the increases in complexity and scale of their
host systems. Selected topics are the various software
frameworks & hardware platforms and the use of FPGA’s.
Also considered are design methodologies and
management processes. We’ll illustrate the role the
control system plays as a unifying force, not only for sub-
parts and technologies, but also on project teams: it
supports the shaping, very early in the project, of
subsystem responsibilities and system requirements.

INTRODUCTION TO THE CONTROL
SYSTEM AND ITS COMPONENTS

Control Systems (CS) of the so called big physics
facilities, some of men’s most complex and costly
machines, are not only highly complex systems in their
own right, they also come in a great variety, differing in
many fundamental aspects. Still, one can come up with a
reasonable definition of a control system:

A control system is a set of interconnected computing
hardware and I/O peripherals, with dedicated
programming, that allows operators and scientists to
bring the entire machine in a desired operating state in a
safe, controlled and predictable manner, such that the
experiment can be performed and observational data
collected.

Figure 1: Control system overview.

As such the CS can be seen as (delivering) a service to

the experiment and experimenter. We want to stress that it
is important to consider the CS through this user oriented
paradigm when designing the overall system, rather than
merely looking at the physical - and software
components. System architects refer to this paradigm as
the use case - or also conceptual view. This as opposed to
e.g. the physical or deployment views [1, 2].

From this use case or user point of view one can
perceive e.g. the following needs:

• Persistent storage and retrieval of data such as
configuration parameters, run-time loggings,…

• Accelerator Physics applications that can execute
e.g. setup sequences.

• Interactive user interfaces for engineering and
operational purposes.

To successfully implement solutions for these needs
one has to carefully consider the following questions:

• Which of these needs pose hard real-time
requirements on (parts of) the machine and which
don’t?

• How to define subsystems such that their
responsibilities are clear and have little overlap (high
cohesion) and that the amount of their
interconnections can be kept to a reasonable
minimum (low coupling)?

To illustrate the last point we look in more detail into

two important subsystems, the Timing System (TS) and
the Machine Protection System and their inter-relations.
The TS orchestrates all actions in the machine through the
distribution of high resolution time stamps. The MPS
detects problems and triggers a fast machine shut-down
to minimize damage to the equipment. The two are
tightly coupled, see e.g. [3]: “The MPS uses the timing
system to assure operation within specified duty cycle and
pulse width limits. In addition, information on shut-down
causes originating with the MPS is broadcast by the
timing system for post mortem analysis.” Sometimes, a
“beam permit” subsystem is defined as part of the CS.
One can easily image different interpretations as to which
subsystem does exactly what in this case. Such
misalignments have to be sorted out early in the project to
prevent them from becoming liabilities later. This is a
people management issue, more than a technical one. The
centralizing role of the CS in the entire system places the
CS team in a natural role for clarifying and documenting
such subsystem responsibilities. We will explore this
aspect in more detail in the development processes
paragraph of the paper.

P
re

se
nt

at
io

n
S

er
vi

ce
s

an
d

da
ta

R
es

ou
rc

es

 __
#igor.verstovsek@cosylab.com

THXA01 Proceedings of IPAC2011, San Sebastián, Spain

2844C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

THE USE OF FPGA’S
When we speak of FPGA’s we essentially mean

reprogrammable hardware. The logical behavior is not
defined during mass production of the silicon nor board
assembly in the factory, but rather in-the-field, e.g. as part
of system integration. FPGA’s possess many of the
typical advantages of implementation in hardware versus
in software: faster, deterministic (synchronized) and with
(true) parallel execution of logical operations. At the same
time they exhibit typical benefits of software realizations:
high-level and flexible definition of behavior and the
ability to redefine it, either for requirements changes,
stepwise refinements or simply to fix “bugs”.
Applications in CS design are digital LLRF control (for
RF cavities), the MPS and timing systems, Data
Acquisition and many more.

 Figure 1 illustrates the increase in interest and
consideration of FPGA’s in the accelerator community.
We simply measured the occurrence of the text string
“FPGA” in pac/epac/apac/ipac conferences over the
years. One can observe an order of magnitude increase
over the last decade.

We do not need to look far for the reasons for success
of FPGA technology. FPGA’s do exhibit best-of-both
worlds properties without a big price tag, at least not in
initial purchase price. There are however a number of
well-known pitfalls in the software development practice
that enter the hardware discipline through FPGA
technology. They can turn costly if unrecognized.

A first one is the false sense of flexibility of (re-)
programming in the scope of very large systems. No
engineer would consider changing structural aspects of a
bridge design halfway through the building process. Even
in the early stages, people can envision that postponing
choices like the suspension mechanism until later makes
no sense. In software projects however the impact on cost
and risk of late changes can be equally problematic and
yet they are not always perceived as such. A level of
maturity and experience with large software projects is
needed to assess what can be safely altered later and what
cannot without bringing the project in jeopardy.

A second one is added complexity. To make the point
in a philosophical way: with modern FPGA development
tools it is easy (and cheap) to neglect Occam’s Razor
principle, i.e. in case of equal solutions to a problem,
taking the simpler, more elegant one. An exaggeration to
illustrate the point: With a few mouse moves one can
drag-and-drop a complete CPU onto the FPGA, run a
limited version of Linux on the board and demonstrate the
proof of concept with some kind of “Hello World!” app…
then to discover compatibility headaches you’ve
introduced when making the “Real World!” application.

SOFTWARE BUS OR MIDDLEWARE
The previous paragraphs stated and illustrated

managing complexity as a main challenge for CS projects.
Abstraction and generalization are classic concepts for
achieving this aim and are widely used in software
engineering. In distributed systems (HW and SW on a
large number of networked computers) an important
abstraction tool is the so called software bus. Other
designations are software framework or simply
middleware. Examples in the CS world are EPICS,
CMW/FESA, TANGO, TINE, DOOCS, MADOCA, e.a.
The goal of these frameworks is to allow distributed
software components to be “plugged-in” into a system
analogously to a hardware bus, such as VME. This allows
large parts of the software system to treat, in our case
control, these components in a standardized way,
independent of the different physical equipment they
represent.

One might ask whether the various solutions that are
available differ in fundamental ways. In terms of
technology and certain performance criteria they certainly
do. In terms of service they offer to the system they
essentially don’t. In selecting the right match for your
system it is good to take a number of non-functional
aspects into consideration, besides the purely technical
ones:
• Support: Is there a strong user and developer

community for this system?
• Is there a large number of supported devices, with a

relatively small set of interfaces? (remember, the

0%

1%

2%

3%

4%

5%

6%

7%

Figure 2: String “FPGA” in conference articles.

Proceedings of IPAC2011, San Sebastián, Spain THXA01

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2845 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

goal of the added layer in software is achieving
generalization)

• Is it lightweight on dependencies? It should not
depend on other complex middleware and should
have few central services as single point-of-failure.

EPICS & TANGO, widely used in the community,
meet these criteria. But they are not the only ones to do
so, which supports the observation that also other
frameworks are chosen to provide the software bus
service to accelerator control systems.

HARDWARE PLATFORMS
Also in hardware platforms we observe the clear

absence of the winner-takes-all phenomenon that has so
often shaped the IT industry (MS Windows, Google
search, PCIe). The very diverse and unique needs of
experimental facilities are probably accountable for
market dynamics that set it apart from the mass consumer
IT space.

Still, and we’ll get back to this in the next section, one
should standardize as much as possible in CS projects. A
choice of one of the current HW platform standards
(VME, ATCA, cPCI,…) over the others is in order. What
should be the criteria for choice? A comparison of 3
major platforms is summarized in Table 1.

Table 1: Hardware Platform Comparison

 VME ATCA cPCI

Vendor
support

High/
Declining

Low/
Growing

Medium/
Stable

Maturity High Medium High

Longevity Medium High High

Max.
transfer
rate

VME:
40MB/s
VME64:
80MB/s
VME64x:
160MB/s
VME320:
320MB/s

1Gbps,
10Gbps
(Gigabit
Ethernet);

250MB/s/lane
(PCIe)

PCI:
133MB/s
PCIe:
250MB/s/lane
(up to 16
lanes)

Topology Master-slaves
Star
Dual star
Full mesh

Master-slaves

Form factor 6U (64 bit)
3U (32 bit)

12U (ATCA)
2U (μTCA) 3U

High
availability Medium High Medium

Software
support
(Linux,
EPICS)

High Medium Medium

Cost High High Medium

Users

SNS, SLS,
Diamond Light
Source, NSLS
II, …

XFEL (LLRF),
ITER, TPS
(considering)

ALBA, TPS,
CERN (LHC
collimation),
LANL,
ORNL, ITER
(planned)

Two criteria we believe should receive proper attention:
1. Usability, i..e. what the platform can do, the features,

but also how well the relevant tools are debugged.
2. Longevity

Strong performance figures measured by today’s

standards means the platform will not be outdated in a
few years’ time, but this is not enough. One should look
for a platform that will be accepted most likely by the
majority in the industry. That means that one shouldn’t
look just at other labs. The reason is that a well-accepted
technology determines a complete and broad market that
not only provides many manufacturers (and thus lowest
prices) but also a vast number of users that will be “in the
same boat” with you, if you have chosen the same
technology as them.

DEVELOPMENT METHODOLOGIES
AND PROCESSES

Experimental setups and their control systems are
growing in complexity. As experience with accelerators
grows and the computing equipment to build them
becomes more performing and at the same time
economical, the expectations on the machines, for
example in terms of flexibility, are also growing.

The expectations can be met, provided we can manage
the growing system complexity that comes with it. One
natural evolution has been that these projects moved from
being a research project in itself to becoming engineering
projects. Examples of this are the already mentioned
software and hardware standardization. But apart from
this it also entails standardizing on managerial aspects of
the project. We believe they are more crucial to success
then the technological standardizations.

Let’s look at the development process. There are a
number of different development methodologies that have
proven their value (waterfall, SA/SD, iterative, agile …).
Yet, they have different vocabularies with on top varying
interpretations between development organizations. The
trend towards large international projects with in-kind
contributions requires the establishment of a common
language to communicate about e.g. requirements,
deliverables, unit & integration tests e.a., and their
expected levels of quality and completeness. In view of
the overwhelming amount of such (intangible) artefacts in
these projects, this can only be achieved by agreeing on
very rigid standards.

THXA01 Proceedings of IPAC2011, San Sebastián, Spain

2846C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

Requireme
attention. Pe
down require
better to wri
(incomplete,
be more focu
must come up
and specific
attention ear
keeping over
their consiste
test cases is w

As mention
of the CS in
natural role
requirements
system: the C
the hands o
harmonize th

Two more
shortly ment
beginning. T
through the
bring the sys
were made in
also make
requirements
system has
feedback then

An exampl
was complet
project. From
signals for a
with the same

Figure 3: M
project.

ents managem
eople generall
ements they
ite them dow
inconsistent).
ussed and eff
p and be dealt

cation in the
rlier! Invest
rview of the m
ency and their
worth consider
ned in the int

n the entire sy
for clarifying

s. One could in
CS and CS pro
of the proje

he overall proj
e developmen
tion. Realize

These are usa
(multi-layere

stem to live a
n the definiti
the system

s elicitation
shown to br
n presenting d
le of this is th
ted in the ea
m a functiona
a power conv
e software lay

MACS Vertica

ment is a
ly feel a resi
know are no

wn early, in t
 This way the

ffective, as th
t with to bring

eir final shap
ting in a too
many hundred
r traceability t
ring.
troduction, the
ystem places
g and docume
ntroduce the t
oject team as
ct leader to
ect effort.
t process asp

vertical pro
age-scenario d
ed) system a
and challenge
on of the inte
more tangib

(seeing a c
ring up more
drawing board
he MACS Ver
arly stages of
al GUI, down
verter, the sin
yering as the fi

al Column in

special point
istance to wr

ot final. Still
the form they
e design effort
e pain-points
g the requirem
pe will com
ol that facili

ds of requirem
o components

e centralizing
the CS team
enting the sy
term meta-con

a tool/leverag
 orchestrate

pects we’d lik
ototypes from
driven, thin-s
architecture. T
e assumptions
erfaces (API’s
ble which h
concrete, tang
e useful custo
d abstractions)
rtical Column
f the MedAus
n to actual co
ngle rack ope
inal system.

 the MedAus

t of
riting
it is

y are
t will

that
ments
e to
itates

ments,
s and

role
in a

ystem
ntrol-
ge in

and

ke to
m the
slices
They
 that
s). It
helps
gible
omer
.

n that
stron
ntrol
rates

stron

A
from
comp
with a
and
devel
early

The
a shif
engin
meeti
growi
comp

The
conso

• T
m

• T
g
f

• Y
t
p
m

It i
bound
integr
mana
risk, i

[1] P
‘
1

[2] M
Q
I
(

[3] C
a
P
K

related conce
a partial, b

plete machine,
a specification
a “big-bang

lopment bring
and hence red

C
e design of co
ft from being
neering discipl
ing performa
ing flexibil

plexities.
e result is a
olidation:

There is a se
middleware.
Teams repeat
growing num
furthering stan
Yet, there rem
to meet ex
providers und
market.

is also in the n
daries of wh
ration this tra

age the CS int
in-time and w

Philippe Kruc
4+1’ View M

1995, IEEE So
Matthew West
Quality Data M
Industries ST
(EPISTLE).
C. Sibley, A. J
and Integratio
Protection Sy
Korea, 13 - 17

ept is iterativ
but completed
, as opposed
n-only start, c

g” integration
gs out on val
duces risks lat

CONCLUS
ontrol systems
a research top
line. Main co

ance requirem
lity expecta

a trend of co

et of proven,

t the proven
mber of of
ndardization.

mains and will
xceptional re
derstand the

nature of this
hat is consid
anslates in a
tegration comp

within-budget.

REFEREN
chten,“Archite
Model of Soft
oftware 12 (6)
t and Julian F
Models”, 199
TEP Techni

Jones, D. Tho
on of the SN
ystems”, ICA

7 Oct. 2003, p.

ve developmen
d, working s
to the “classic
oding phase in

n at the en
luable custom
te in the projec

SIONS
s for accelerat
pic to becomi

oncerns have s
ments to ma
ations and

onvergence w

stable soluti

recipes and
ff-the-shelf c

remain enoug
quirements
specific nat

field to keep
dered possibl

continuous c
plexities and

NCES
ectural Bluepr
ware Architec
, pp. 42-50.

Fowler, “Deve
99, The Europ
ical Liaison

ompson, “Imp
NS Timing an
ALEPCS´03,
145.

nt: evolving
subset to a
c waterfall”,
n the middle

nd. Iterative
mer feedback
ct.

tors has seen
ing a mature
shifted from
anaging the

integration

ithout over-

ions, e.g. in

integrate a
components,

gh flexibility
as solution
ture of this

pushing the
le. For CS
challenge to
deliver low-

rints — The
cture”, Nov.

eloping High
pean Process

Executive

plementation
nd Machine

Gyeongju,

Proceedings of IPAC2011, San Sebastián, Spain THXA01

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2847 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

