THXAO01

Proceedings of IPAC2011, San Sebastian, Spain

RECENT TRENDS IN ACCELERATOR CONTROL SYSTEMS
L. Verstoviek”, F. Amand, M. Plesko, K. Zagar, Cosylab, Ljubljana, Slovenia

Abstract

Control Systems play a central role in the daily
operation of accelerator facilities. They also pose unique
challenges during the overall design and realization of the
machine. This paper reviews important recent trends in
the field of accelerator control systems and describes how
they address the increases in complexity and scale of their
host systems. Selected topics are the various software
frameworks & hardware platforms and the use of FPGA’s.
Also considered are design methodologies and
management processes. We’ll illustrate the role the
control system plays as a unifying force, not only for sub-
parts and technologies, but also on project teams: it
supports the shaping, very early in the project, of
subsystem responsibilities and system requirements.

INTRODUCTION TO THE CONTROL
SYSTEM AND ITS COMPONENTS

Control Systems (CS) of the so called big physics
facilities, some of men’s most complex and costly
machines, are not only highly complex systems in their
own right, they also come in a great variety, differing in
many fundamental aspects. Still, one can come up with a
reasonable definition of a control system:

A control system is a set of interconnected computing
hardware and I/O peripherals, with dedicated
programming, that allows operators and scientists to
bring the entire machine in a desired operating state in a
safe, controlled and predictable manner, such that the
experiment can be performed and observational data
collected.

-

Engineering consoles j (Archive viewer

Reference manual) (|

Camera display
Machine manager) (Log viewer
) [Alarm and interlock viewer

YY)
UL

Presentation

Beam manager

K Scripting engine

N AN

/OOOOO

) (Machine model)
) (__Process variable archive)
) (Deployment and configuration)
) (__Diagnostics log archive)

Log book

Data correlator

Orbit correction

Services and data

Alarms

Process variables

Interlock monitoring
Signal correlation

Machine protection

Resources

Timing event generator

Beam position

Motion control
RF

)
)
)
)
Central timing)
)
)
)
)

%

Figure 1: Control system overview.

"igor.verstovsek@cosylab.com

2844

As such the CS can be seen as (delivering) a service to
the experiment and experimenter. We want to stress that it
is important to consider the CS through this user oriented
paradigm when designing the overall system, rather than
merely looking at the physical - and software
components. System architects refer to this paradigm as
the use case - or also conceptual view. This as opposed to
e.g. the physical or deployment views [1, 2].

From this use case or user point of view one can
perceive e.g. the following needs:

e Persistent storage and retrieval of data such as
configuration parameters, run-time loggings,...

e Accelerator Physics applications that can execute
e.g. setup sequences.

o Interactive user interfaces for engineering and
operational purposes.

To successfully implement solutions for these needs
one has to carefully consider the following questions:

e Which of these needs pose hard real-time
requirements on (parts of) the machine and which
don’t?

e How to define subsystems such that their
responsibilities are clear and have little overlap (high
cohesion) and that the amount of their
interconnections can be kept to a reasonable
minimum (low coupling)?

To illustrate the last point we look in more detail into
two important subsystems, the Timing System (TS) and
the Machine Protection System and their inter-relations.
The TS orchestrates all actions in the machine through the
distribution of high resolution time stamps. The MPS
detects problems and triggers a fast machine shut-down
to minimize damage to the equipment. The two are
tightly coupled, see e.g. [3]: “The MPS uses the timing
system to assure operation within specified duty cycle and
pulse width limits. In addition, information on shut-down
causes originating with the MPS is broadcast by the
timing system for post mortem analysis.” Sometimes, a
“beam permit” subsystem is defined as part of the CS.
One can easily image different interpretations as to which
subsystem does exactly what in this case. Such
misalignments have to be sorted out early in the project to
prevent them from becoming liabilities later. This is a
people management issue, more than a technical one. The
centralizing role of the CS in the entire system places the
CS team in a natural role for clarifying and documenting
such subsystem responsibilities. We will explore this
aspect in more detail in the development processes
paragraph of the paper.

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

Proceedings of IPAC2011, San Sebastian, Spain

THXAO01

7%

6%

5%

- 4%

- 3%

- 2%

- 1%

r T T T

- 0%

q"/ 0.>°-’ cab‘ OS” q@c"\ q“’ q‘b XSS 0@/ & Qb‘ Q"‘ 0°° 0606\ 06\ & QQ’ '9

& & &

Q,Q Q@Q Q@Q Q@szQ QQ,Q@Q Q@Q Q@Q@Q QQ,Q szQ@Q Q Q
Figure 2: String “FPGA” in conference articles.

THE USE OF FPGA’S

When we speak of FPGA’s we essentially mean
reprogrammable hardware. The logical behavior is not
defined during mass production of the silicon nor board
assembly in the factory, but rather in-the-field, e.g. as part
of system integration. FPGA’s possess many of the
typical advantages of implementation in hardware versus
in software: faster, deterministic (synchronized) and with
(true) parallel execution of logical operations. At the same
time they exhibit typical benefits of software realizations:
high-level and flexible definition of behavior and the
ability to redefine it, either for requirements changes,
stepwise refinements or simply to fix “bugs”.
Applications in CS design are digital LLRF control (for
RF cavities), the MPS and timing systems, Data
Acquisition and many more.

Figure 1 illustrates the increase in interest and
consideration of FPGA’s in the accelerator community.
We simply measured the occurrence of the text string
“FPGA” in pac/epac/apac/ipac conferences over the
years. One can observe an order of magnitude increase
over the last decade.

We do not need to look far for the reasons for success
of FPGA technology. FPGA’s do exhibit best-of-both
worlds properties without a big price tag, at least not in
initial purchase price. There are however a number of
well-known pitfalls in the software development practice
that enter the hardware discipline through FPGA
technology. They can turn costly if unrecognized.

A first one is the false sense of flexibility of (re-)
programming in the scope of very large systems. No
engineer would consider changing structural aspects of a
bridge design halfway through the building process. Even
in the early stages, people can envision that postponing
choices like the suspension mechanism until later makes
no sense. In software projects however the impact on cost
and risk of late changes can be equally problematic and
yet they are not always perceived as such. A level of
maturity and experience with large software projects is
needed to assess what can be safely altered later and what
cannot without bringing the project in jeopardy.

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

A second one is added complexity. To make the point
in a philosophical way: with modern FPGA development
tools it is easy (and cheap) to neglect Occam’s Razor
principle, i.e. in case of equal solutions to a problem,
taking the simpler, more elegant one. An exaggeration to
illustrate the point: With a few mouse moves one can
drag-and-drop a complete CPU onto the FPGA, run a
limited version of Linux on the board and demonstrate the
proof of concept with some kind of “Hello World!” app...
then to discover compatibility headaches you’ve
introduced when making the “Real World!” application.

SOFTWARE BUS OR MIDDLEWARE

The previous paragraphs stated and illustrated
managing complexity as a main challenge for CS projects.
Abstraction and generalization are classic concepts for
achieving this aim and are widely used in software
engineering. In distributed systems (HW and SW on a
large number of networked computers) an important
abstraction tool is the so called software bus. Other
designations are software framework or simply
middleware. Examples in the CS world are EPICS,
CMW/FESA, TANGO, TINE, DOOCS, MADOCA, e¢.a.
The goal of these frameworks is to allow distributed
software components to be “plugged-in” into a system
analogously to a hardware bus, such as VME. This allows
large parts of the software system to treat, in our case
control, these components in a standardized way,
independent of the different physical equipment they
represent.

One might ask whether the various solutions that are
available differ in fundamental ways. In terms of
technology and certain performance criteria they certainly
do. In terms of service they offer to the system they
essentially don’t. In selecting the right match for your
system it is good to take a number of non-functional
aspects into consideration, besides the purely technical
ones:

e Support: Is there a strong user and developer

community for this system?

o [s there a large number of supported devices, with a

relatively small set of interfaces? (remember, the

2845

THXAO01

goal of the added layer in software is achieving
generalization)

o [s it lightweight on dependencies? It should not
depend on other complex middleware and should
have few central services as single point-of-failure.

EPICS & TANGO, widely used in the community,
meet these criteria. But they are not the only ones to do
so, which supports the observation that also other
frameworks are chosen to provide the software bus
service to accelerator control systems.

HARDWARE PLATFORMS

Also in hardware platforms we observe the clear
absence of the winner-takes-all phenomenon that has so
often shaped the IT industry (MS Windows, Google
search, PCle). The very diverse and unique needs of
experimental facilities are probably accountable for
market dynamics that set it apart from the mass consumer
IT space.

Still, and we’ll get back to this in the next section, one
should standardize as much as possible in CS projects. A
choice of one of the current HW platform standards
(VME, ATCA, cPClI,...) over the others is in order. What
should be the criteria for choice? A comparison of 3
major platforms is summarized in Table 1.

Table 1: Hardware Platform Comparison

Proceedings of IPAC2011, San Sebastian, Spain

Cost High High Medium
ALBA, TPS,
SNS’ SLS, . XFEL (LLRF), CERN (LHC
User Diamond Light ITER. TPS collimation),
Sers Source, NSLS (consi, dering) LANL,
1, ... &) ORNL, ITER
(planned)

VME ATCA cPCI
Vendor ngh/ Low/ Medium/
support Declining Growing Stable
Maturity High Medium High
Longevity Medium High High
VME: 1Gb
40MB/ ps, .
VME6: 10Gbps Il)gfalMB/
: : o s
Max. 80MB/s (Gigabit
transfer Ethernet); PCle:
rate VME64x: 250MB/s/lane
160MB/s (up to 16
250MB/s/lane
VME320: (PCle) anes)
320MB/s
Star
Topology = Master-slaves Dual star Master-slaves
Full mesh
6U (64 bit) 12U (ATCA)
Formfactor 317 35 iy 2uurcay 3V
High Medium High Medium
availability U & u
Software
support High Medium Medium
(Linux,
EPICS)
2846

Two criteria we believe should receive proper attention:

1. Usability, i..e. what the platform can do, the features,
but also how well the relevant tools are debugged.

2. Longevity

Strong performance figures measured by today’s
standards means the platform will not be outdated in a
few years’ time, but this is not enough. One should look
for a platform that will be accepted most likely by the
majority in the industry. That means that one shouldn’t
look just at other labs. The reason is that a well-accepted
technology determines a complete and broad market that
not only provides many manufacturers (and thus lowest
prices) but also a vast number of users that will be “in the
same boat” with you, if you have chosen the same
technology as them.

DEVELOPMENT METHODOLOGIES
AND PROCESSES

Experimental setups and their control systems are
growing in complexity. As experience with accelerators
grows and the computing equipment to build them
becomes more performing and at the same time
economical, the expectations on the machines, for
example in terms of flexibility, are also growing.

The expectations can be met, provided we can manage
the growing system complexity that comes with it. One
natural evolution has been that these projects moved from
being a research project in itself to becoming engineering
projects. Examples of this are the already mentioned
software and hardware standardization. But apart from
this it also entails standardizing on managerial aspects of
the project. We believe they are more crucial to success
then the technological standardizations.

Let’s look at the development process. There are a
number of different development methodologies that have
proven their value (waterfall, SA/SD, iterative, agile ...).
Yet, they have different vocabularies with on top varying
interpretations between development organizations. The
trend towards large international projects with in-kind
contributions requires the establishment of a common
language to communicate about e.g. requirements,
deliverables, unit & integration tests e.a., and their
expected levels of quality and completeness. In view of
the overwhelming amount of such (intangible) artefacts in
these projects, this can only be achieved by agreeing on
very rigid standards.

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

Proceedings of IPAC2011, San Sebastian, Spain

Requirements management is a special point of
attention. People generally feel a resistance to writing
down requirements they know are not final. Still it is
better to write them down early, in the form they are
(incomplete, inconsistent). This way the design effort will
be more focussed and effective, as the pain-points that
must come up and be dealt with to bring the requirements
and specification in their final shape will come to
attention earlier! Investing in a tool that facilitates
keeping overview of the many hundreds of requirements,
their consistency and their traceability to components and
test cases is worth considering.

As mentioned in the introduction, the centralizing role
of the CS in the entire system places the CS team in a
natural role for clarifying and documenting the system
requirements. One could introduce the term meta-control-
system: the CS and CS project team as a tool/leverage in
the hands of the project leader to orchestrate and
harmonize the overall project effort.

Two more development process aspects we’d like to
shortly mention. Realize vertical prototypes from the
beginning. These are usage-scenario driven, thin-slices
through the (multi-layered) system architecture. They
bring the system to live and challenge assumptions that
were made in the definition of the interfaces (API’s). It
also make the system more tangible which helps
requirements elicitation (seeing a concrete, tangible
system has shown to bring up more useful customer
feedback then presenting drawing board abstractions).

An example of this is the MACS Vertical Column that
was completed in the early stages of the MedAustron
project. From a functional GUI, down to actual control
signals for a power converter, the single rack operates
with the same software layering as the final system.

Figure 3: MACS Vertical Column in the MedAustron
project.

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

THXAO01

A related concept is iterative development: evolving
from a partial, but completed, working subset to a
complete machine, as opposed to the “classic waterfall”,
with a specification-only start, coding phase in the middle
and a “big-bang” integration at the end. Iterative
development brings out on valuable customer feedback
early and hence reduces risks late in the project.

CONCLUSIONS

The design of control systems for accelerators has seen
a shift from being a research topic to becoming a mature
engineering discipline. Main concerns have shifted from
meeting performance requirements to managing the
growing flexibility expectations and integration
complexities.

The result is a trend of convergence without over-
consolidation:

e There is a set of proven, stable solutions, e.g. in
middleware.

e Teams repeat the proven recipes and integrate a
growing number of off-the-shelf components,
furthering standardization.

e Yet, there remains and will remain enough flexibility
to meet exceptional requirements as solution
providers understand the specific nature of this
market.

It is also in the nature of this field to keep pushing the
boundaries of what is considered possible. For CS
integration this translates in a continuous challenge to
manage the CS integration complexities and deliver low-
risk, in-time and within-budget.

REFERENCES

[1] Philippe Kruchten,“Architectural Blueprints — The
‘4+1° View Model of Software Architecture”, Nov.
1995, IEEE Software 12 (6), pp. 42-50.

[2] Matthew West and Julian Fowler, “Developing High
Quality Data Models”, 1999, The European Process
Industries STEP Technical Liaison Executive
(EPISTLE).

[3] C. Sibley, A. Jones, D. Thompson, “Implementation
and Integration of the SNS Timing and Machine
Protection Systems”, ICALEPCS’03, Gyeongju,
Korea, 13 - 17 Oct. 2003, p.145.

2847

