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Abstract 
Control Systems play a central role in the daily 

operation of  accelerator facilities. They also pose unique 
challenges during the overall design and realization of the 
machine. This paper reviews important recent trends in 
the field of accelerator control systems and describes how 
they address the increases in complexity and scale of their 
host systems. Selected topics are the various software 
frameworks & hardware platforms and the use of FPGA’s. 
Also considered are design methodologies and 
management processes. We’ll illustrate the role the 
control system plays as a unifying force, not only for sub-
parts and technologies, but also on project teams: it 
supports the shaping, very early in the project, of 
subsystem responsibilities and system requirements. 

INTRODUCTION TO THE CONTROL 
SYSTEM AND ITS COMPONENTS 

Control Systems (CS) of the so called big physics 
facilities, some of men’s most complex and costly 
machines, are not only highly complex systems in their 
own right, they also come in a great variety, differing in 
many fundamental aspects. Still, one can come up with a 
reasonable definition of  a control system:  

A control system is a set of interconnected computing 
hardware and I/O peripherals, with dedicated 
programming, that allows operators and scientists to 
bring the entire machine in a desired operating state in a 
safe, controlled and predictable manner, such that the 
experiment can be performed and observational data 
collected. 

 

 
Figure 1: Control system overview. 

 
As such the CS can be seen as (delivering) a service to 

the experiment and experimenter. We want to stress that it 
is important to consider the CS through this user oriented 
paradigm when designing the overall system, rather than 
merely looking at the physical - and software 
components. System architects refer to this paradigm as 
the use case - or also conceptual view. This as opposed to 
e.g. the physical or deployment views [1, 2]. 

From this use case or user point of view one can 
perceive e.g. the following needs: 

• Persistent storage and retrieval of data such as 
configuration parameters, run-time loggings,… 

• Accelerator Physics applications that can execute 
e.g. setup sequences. 

• Interactive user interfaces for engineering and 
operational purposes. 

To successfully implement solutions for these needs 
one has to carefully consider the following questions: 

• Which of these needs pose hard real-time 
requirements on (parts of) the machine and which 
don’t? 

• How to define subsystems such that their 
responsibilities are clear and have little overlap (high 
cohesion) and that the amount of their 
interconnections can be kept to a reasonable 
minimum (low coupling)?  

 
To illustrate the last point we look in more detail into 

two important subsystems, the Timing System (TS) and 
the Machine Protection System and their inter-relations. 
The TS orchestrates all actions in the machine through the 
distribution of high resolution time stamps. The MPS 
detects problems and triggers a fast machine shut-down  
to minimize  damage to the equipment. The two are 
tightly coupled, see e.g. [3]: “The MPS uses the timing 
system to assure operation within specified duty cycle and 
pulse width limits. In addition, information on shut-down 
causes originating with the MPS is broadcast by the 
timing system for post mortem analysis.” Sometimes, a 
“beam permit” subsystem is defined as part of the CS. 
One can easily image different interpretations as to which 
subsystem does exactly what in this case. Such 
misalignments have to be sorted out early in the project to 
prevent them from becoming liabilities later. This is a 
people management issue, more than a technical one. The 
centralizing role of the CS in the entire system places the 
CS team in a natural role for clarifying and documenting 
such subsystem responsibilities. We will explore this 
aspect in more detail in the development processes 
paragraph of the paper. 
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THE USE OF FPGA’S 
When we speak of FPGA’s we essentially mean 

reprogrammable hardware. The logical behavior is not 
defined during mass production of the silicon nor board 
assembly in the factory, but rather in-the-field, e.g. as part 
of system integration. FPGA’s possess many of the 
typical advantages of implementation in hardware versus 
in software: faster, deterministic (synchronized) and with 
(true) parallel execution of logical operations. At the same 
time they exhibit typical benefits of software realizations: 
high-level and flexible definition of behavior and the 
ability to redefine it, either for requirements changes, 
stepwise refinements or simply to fix “bugs”. 
Applications in CS design are digital LLRF control (for 
RF cavities), the MPS and timing systems, Data 
Acquisition and many more.  

 Figure 1 illustrates the increase in interest and 
consideration of FPGA’s in the accelerator community. 
We simply measured the occurrence of the text string 
“FPGA” in pac/epac/apac/ipac conferences over the 
years. One can  observe an order of magnitude increase 
over the last decade.  

We do not need to look far for the reasons for success 
of FPGA technology. FPGA’s do exhibit best-of-both 
worlds properties without a big price tag, at least not in 
initial purchase price. There are however a number of 
well-known pitfalls in the software development practice 
that enter the hardware discipline through FPGA 
technology. They can turn costly if unrecognized. 

A first one is the false sense of flexibility of (re-) 
programming in the scope of very large systems. No 
engineer would consider changing structural aspects of a 
bridge design halfway through the building process. Even 
in the early stages, people can envision that postponing 
choices like the suspension mechanism until later makes 
no sense. In software projects however the impact on cost 
and risk of late changes can be equally problematic and 
yet they are not always perceived as such. A level of 
maturity and experience with large software projects is 
needed to assess what can be safely altered later and what 
cannot without bringing the project in jeopardy. 

A second one is added complexity. To make the point 
in a philosophical way: with modern FPGA development 
tools it is easy (and cheap) to neglect Occam’s Razor 
principle, i.e. in case of equal solutions to a problem, 
taking the simpler, more elegant one. An exaggeration to 
illustrate the point: With a few mouse moves one can 
drag-and-drop a complete CPU onto the FPGA, run a 
limited version of Linux on the board and demonstrate the 
proof of concept with some kind of “Hello World!” app… 
then to discover compatibility headaches you’ve 
introduced when making the “Real World!” application.   

SOFTWARE BUS OR MIDDLEWARE 
The previous paragraphs stated and illustrated 

managing complexity as a main challenge for CS projects. 
Abstraction and generalization are classic concepts for 
achieving this aim and are widely used in software 
engineering. In distributed systems (HW and SW on a 
large number of networked computers) an important 
abstraction tool is the so called software bus. Other 
designations are software framework or simply 
middleware. Examples in the CS world are EPICS, 
CMW/FESA, TANGO, TINE, DOOCS, MADOCA, e.a. 
The goal of these frameworks is to allow distributed 
software components to be “plugged-in” into a system 
analogously to a hardware bus, such as VME. This allows 
large parts of the software system to treat, in our case 
control, these components in a standardized way, 
independent of the different physical equipment they 
represent. 

One might ask whether the various solutions that are 
available differ in fundamental ways. In terms of 
technology and certain performance criteria they certainly 
do. In terms of service they offer to the system they 
essentially don’t. In selecting the right match for your 
system it is good to take a number of non-functional 
aspects into consideration, besides the purely technical 
ones: 
• Support: Is there a strong user and developer 

community for this system? 
• Is there a large number of supported devices, with a 

relatively small set of interfaces? (remember, the 
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Figure 2: String “FPGA” in conference articles.  
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goal of the added layer in software is achieving 
generalization) 

• Is it lightweight on dependencies? It should not 
depend on other complex middleware and should 
have few central services as single point-of-failure. 

EPICS & TANGO, widely used in the community, 
meet these criteria. But they are not the only ones to do 
so, which supports the observation that also other 
frameworks are chosen to provide the software bus 
service to accelerator control systems. 

HARDWARE PLATFORMS 
Also in hardware platforms we observe the clear 

absence of the winner-takes-all phenomenon that has so 
often shaped the IT industry (MS Windows, Google 
search, PCIe). The very diverse and unique needs of 
experimental facilities are probably accountable for 
market dynamics that set it apart from the mass consumer 
IT space.  

Still, and we’ll get back to this in the next section, one 
should standardize as much as possible in CS projects. A 
choice of one of the current HW platform standards 
(VME, ATCA, cPCI,…) over the others is in order. What 
should be the criteria for choice? A comparison of 3 
major platforms is summarized in Table 1. 

 

Table 1: Hardware Platform Comparison 

 VME ATCA cPCI 

Vendor 
support 

High/ 
Declining 

Low/ 
Growing 

Medium/ 
Stable 

Maturity High Medium High 

Longevity Medium High High 

Max. 
transfer 
rate 

VME: 
40MB/s  
VME64: 
80MB/s  
VME64x: 
160MB/s  
VME320: 
320MB/s 

1Gbps, 
10Gbps 
(Gigabit 
Ethernet); 
 
250MB/s/lane 
(PCIe) 

PCI: 
133MB/s  
PCIe: 
250MB/s/lane 
(up to 16 
lanes) 

Topology Master-slaves 
Star 
Dual star 
Full mesh 

Master-slaves 

Form factor 6U (64 bit) 
3U (32 bit) 

12U (ATCA) 
2U (μTCA) 3U 

High 
availability Medium High Medium 

Software 
support 
(Linux, 
EPICS) 

High Medium Medium 

Cost High High Medium 

Users 

SNS, SLS, 
Diamond Light 
Source, NSLS 
II, … 

XFEL (LLRF), 
ITER, TPS 
(considering) 

ALBA, TPS, 
CERN (LHC 
collimation), 
LANL, 
ORNL, ITER 
(planned) 

 
 
Two criteria we believe should receive proper attention: 
1. Usability, i..e. what the platform can do, the features, 

but also how well the relevant tools are debugged. 
2. Longevity 
 
Strong performance figures measured by today’s 

standards means the platform will not be outdated in a 
few years’ time, but this is not enough. One should look 
for a platform that will be accepted most likely by the 
majority in the industry. That means that one shouldn’t 
look just at other labs. The reason is that a well-accepted 
technology determines a complete and broad market that 
not only provides many manufacturers (and thus lowest 
prices) but also a vast number of users that will be “in the 
same boat” with you, if you have chosen the same 
technology as them. 

DEVELOPMENT METHODOLOGIES 
AND PROCESSES 

Experimental setups and their control systems are 
growing in complexity. As experience with accelerators 
grows and the computing equipment to build them 
becomes more performing and at the same time 
economical, the expectations on the machines, for 
example in terms of flexibility, are also growing. 

The expectations can be met, provided we can manage 
the growing system complexity that comes with it. One 
natural evolution has been that these projects moved from 
being a research project in itself to becoming engineering 
projects. Examples of this are the already mentioned 
software and hardware standardization. But apart from 
this it also entails standardizing on managerial aspects of 
the project. We believe they are more crucial to success 
then the technological standardizations. 

Let’s look at the development process. There are a 
number of different development methodologies that have 
proven their value (waterfall, SA/SD, iterative, agile …). 
Yet, they have different vocabularies with on top varying 
interpretations between development organizations. The 
trend towards large international projects with in-kind 
contributions requires the establishment of a common 
language to communicate about e.g. requirements, 
deliverables, unit & integration tests e.a., and their 
expected levels of quality and completeness. In view of 
the overwhelming amount of such (intangible) artefacts in 
these projects, this can only be achieved by agreeing on 
very rigid standards.  
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