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Abstract

For the recombination of the two trains coming from the
CLIC damping rings, a delay loop will be used in order to
obtain the nominal 0.5 ns bunch spacing. The optics design
of the loop is based upon an isochronous ring, in order to
preserve the longitudinal beam distribution. Analytical ex-
pressions for achieving isochronous conditions in high or-
der for Theoretical Minimum Emittance cells are obtained.
A parametrisation of the quadrupole settings for achieving
these conditions is presented, along with general consider-
ations regarding the choice of bending magnet characteris-
tics.

INTRODUCTION

A unique loop, downstream of the CLIC damping rings,
is used to recombine consecutively both particle species’
trains, in order to form the bunch pattern with 0.5 ns time
structure required by the collider. This delay loop (DL)
should be designed in such a way so as to preserve the
beam characteristics achieved in the damping rings mak-
ing train recombination as transparent as possible for the
collider performance. One important condition for keep-
ing the longitudinal beam distribution unperturbed is that
the ring is isochronous, i.e. its the path length is indepen-
dent of the energy. Isochronicity conditions require that
the optics is tuned so as to eliminate the momentum com-
paction factor. Although the leading order contribution to
the momentum compaction factor stems from the average
dispersion function in the dipoles, the remaining higher or-
der terms depend on the dispersion evolution at all orders
along the whole cell. The aim of this paper is to anal-
yse, understand and consequently optimise the cell param-
eters that lead to high-order isochronicity conditions, con-
sidering only linear transverse magnetic fields. The high-
order dispersion propagation, necessary for the calculation
of the momentum compaction factor relations, is obtained
analytically for a Theoretical Minimum Emittance (TME)
cell, for which a detailed optics analysis has been already
worked out, in thin element approximation [1]. Higher or-
der momentum compaction factors are calculated and their
dependence from the quadrupole strengths is illustrated.
Finally, the impact of this optics to the horizontal emittance
and energy loss due to synchrotron radiation is discussed.

HIGH ORDER DISPERSION FUNCTIONS

In order to analytically calculate the momentum com-
paction factor of the entire TME cell, it is essential to esti-
mate the dispersion function up to high order, e.g. two or-

ders higher than the leading one. This is done by propagat-
ing and solving the equations of the dispersion for every el-
ement of the cell, using the thick lens expressions. As a first
step, only transverse fields for dipoles and quadrupoles are
considered, without any linear or non-linear errors. In order
to analytically find the solutions of the element strengths as
a function of the high order momentum compaction factor,
thin lens approximations can be applied, leading to polyno-
mial expressions.

In Fig. 1, the layout of the cell is shown, with the dipole
D of length ldip, drift spaces s1, s2, s3 and two quadrupoles
Q1 and Q2, of focal length f1 and f2, respectively.

Figure 1: Layout of a TME cell.

The propagation of the dispersion function starts from
the centre of the dipole, where the derivative of the disper-
sion is zero [1] until the point of symmetry at the end of
the drift space s3, where also the derivative is zero. Under
these considerations, a set of solutions for the dispersion
equations up to second order for every element of the TME
cell can be obtained.

The analytic form of the differential equations of the
dispersion can be calculated [2] from the Hamiltonian of
the off-momentum particle with a momentum deviation
δ = p−p0

p0
, where p0 is the nominal momentum.

Assuming that the delay loop has no vertical bending,,
i.e. 1

ρy
= 0, and considering motion along the horizon-

tal x axis only, the canonical Hamilton equations in that
plane can be used to derive the equations of motion for off-
momentum particles. Considering only transverse mag-
netic fields for separated function magnets, the longitudinal
vector potential component for a bending and quadrupole
magnet are:

e

p0
Abend

s = −1

2

(
1 +

x

ρx

)
, (1)

e

p0
Aquad

s = −1

2
g0x

2 , (2)

where g0 = e
p0
(
∂By

∂x )

∣∣∣∣
x=y=0

is the normalised quadrupole

gradient. Using the expansions up to third order of the par-
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ticle’s horizontal position with respect to δ and its deriva-
tive with s:

x = η0δ + η1δ
2 + η2δ

3 , (3)

x′ = η′0δ + η′1δ
2 + η′2δ

3 , (4)

with η0, η1, η2 the zero, first and second order dispersion
functions, respectively, and x′, η′0, η′1, η′1 the derivatives
of x, η0, η1, η2 with respect to s, the following differen-
tial equations up to second order, for the dispersion, can be
derived [2]:

η′′0 + ( 1
ρ2
x
+ g0)η0 = 1

ρx

η′′1 + ( 1
ρ2
x
+ g0)η1 = g0η0 − 1

ρx
(1− 1

2η
′2
0 )

+ 2
ρ2
x
η0 − 1

ρ3
x
η20

η′′2 + ( 1
ρ2
x
+ g0)η2 = g0(η1 − η0 − 3

2η0η
′
0)

+ 1
ρx
(1 + η′1η

′
0 +

3
2η

′2
0 ) +

2
ρ2
x
(η1 − η0 − η0η

′2
0 )

− 1
ρ3
x
(2η1 − η0)η0

(5)

MOMENTUM COMPACTION FACTOR
CALCULATIONS AND ANALYSIS

Zero Order Momentum Compaction Factor

The zero order momentum compaction factor can be
calculated using the solution of the dispersion inside the
dipole:

η0 = ρx + (ηc − ρx) cos(
s

ρx
) (6)

Using the relation for the zero order momentum com-
paction factor

α0 =
1

L

∫ L

0

η0
ρx

ds

where L is the length of the dipole, Eq.(6) can be used to
calculate α0. This result can be simplified if thin lens ap-
proximation is applied, resulting to:

α0 =
24ηc − (ηc − ρx)θ

2

12ρx
(7)

Solving Eq.(7) with respect to ηc, the dispersion at the
centre of the dipole which eliminates the zero order mo-
mentum compaction factor is indeed negative:

ηc = −7θ2ρ

24
(8)

The behaviour of the zero order momentum compaction
factor in the TME cell is shown in Fig. 2 with respect to the
bending radius ρx and the bending angle θ using a colour
scale. The energy is E = 2.86 GeV, and for a maximum
bending field choice of B = 0.5 T, the minimum bending
radius becomes ρxmin ≈ 19m. The plots correspond to
ρx � ρxmin. From Eq.(7), and setting ηc → 0, α0 is
independent of ρx and quadratic with θ. This is shown in
the left plot of Fig. 2, where a very small ηc value is chosen.
When ηc gets large negative values, the trend is inverted
and at least for small bending angles, α0 scales as 1/ρx, as
shown in the right plot of Fig. 2.

Figure 2: α0 with respect to bending radius ρx and bending
angle θ, for ηc = −0.015m (left) and ηc = −0.8m (right).
Darker areas represent smaller absolute values of α0.

High Order Momentum Compaction Factor

Expanding the momentum compaction factor up to sec-
ond order with respect to δ, yields:

αc = α0 + α1δ + α2δ
2 (9)

The general equation of the momentum compaction fac-
tor is:

αcδ =
1

C0

∮
C

(dl − dl0) (10)

where C0 the nominal closed orbit of the synchronous par-
ticle, C is the closed orbit of the off-momentum particle, dl
the infinitesimal path length of an off-momentum particle
which is given by:

dl =

√
(1 +

x

ρx
)2 + (x′)2ds (11)

and dl0 the nominal one, which can be calculated by
setting x = 0 in Eq.(11). Using the expansions (4),
dl − dl0 can be computed. Inserting this in Eq.(10) and
equating with Eq.(9), the analytic formulas for high orders
terms can be derived:

α1 =
1

L

∫ L

0

(
η20
2ρ2x

+
η1
ρx

+
1

2
η′20

)
ds (12)

α2 =
1

L

∫ L

0

(
η0 η1
ρ2x

+
η2
ρx

+ η′0 η
′
1

)
ds (13)

where α1 and α2 are the first and second order momentum
compaction factor respectively and L is the length of the
element. Inserting the dispersion solutions for the TME
cell in the above equations α1, α2 and αc can be calculated
from (9).

Fig. 3, shows α1 and α2 with respect to f1, f2. The
same colour code is used as in the previous plots. The white
area in the middle of the plots corresponds to quadrupole
strengths that do not provide any solutions. One should
exclude also areas with both positive or negative quad
strengths, as for these values there is no optics stability in
both planes. Larger absolute values of f1, f2, i.e. weaker
focusing is needed for obtaining lower values for α 1 and
α2.
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Figure 3: α1δ (left) and α2δ
2 (right) with respect to

f1,f2. Darker areas represent smaller absolute values of
α0. White areas represent the set of values for f1 and f2
that α1δ and α2δ

2 can get no values.

From Eq. (9), the momentum compaction factor of the
entire cell, ac, can be calculated. On the left of Fig. 4
αc of the TME cell with respect to f1 and f2 is shown.
A combination of large negative f2 and a relatively low
positive f1, could lead to small values of αc.

The plot on the right shows values for positive f1 and
negative f2 for which αc is zero.

Figure 4: αc of the TME cell with respect to f1,f2 (left)
and the curve for sets of values of f1, f2 that are solutions
for αc =0 (right).

ENERGY LOSS PER TURN AND
EMITTANCE SPREAD

Due to synchrotron radiation, the particles inside the
bends lose energy, inversely proportional to the bending ra-
dius. On the left plot of Fig. 5, the energy loss δE depen-
dence on ρ is shown, indicating that a larger bending radius
is necessary (weaker bending field) for minimizing the en-
ergy loss, which should be recovered by an RF cavity with
a weak gradient.

In addition, in the delay loop, the perturbation of the hor-
izontal emittance should be minimum. The TME cell, has
a specific expression for the horizontal emittance [1]:

εx =
Cqγ

2
r

Jxρx

[
1

βc

(
η2c −

θ2ηcρx
12

+
θ4ρ2x
320

)
+

θ2βc

12

]

where Cq = 3.84 · 10−13m, γr is the relativistic gamma
factor, Jx the damping partition number, ρx the bending
radius, βc and ηc the beta and dispersion functions at the

dipole’s centre and θ the bending angle of the dipole. Con-
sidering constant bending radius, and by differentiating ε x
with respect to θ yields:

δεx
εx

=

(
4θ2(40β2

c + ρx(−40ηc + 3θ2ρx))

960η2c + 80β2
cθ

2 − 80ηcθ2ρx + 3θ4ρ2x

)
δθ

θ

which is the relative deviation of the horizontal emittance
with respect to the bending angle relative deviation. The
right plot of Fig. 5 shows the behaviour of δεx

εx
with respect

to θ, for a choice of δθ
θ = 10−4 . It is already straight-

forward from the above relationship, that small values of θ,
that is a bigger number of short dipoles with weak field are
beneficial, for minimizing both energy loss per turn and the
horizontal emittance distortion.

Figure 5: ΔE with respect to ρ (left) and δεx
εx

with respect
to θ (right).

CONCLUSIONS

The TME cell parameters can be chosen so that the mo-
mentum compaction factor is minimised or eliminated and
at the same time to be in accordance with a minimal en-
ergy loss and horizontal emittance conservation. In partic-
ular, it is shown that for low quadrupole strength, the high
order momentum compaction factors can be minimised.
However, full isochronicity conditions, i.e. minimisation
of the leading order momentum compaction factor requires
a small negative dispersion at the centre of the dipole, i.e.
strong quadrupole strengths. In this respect, the optimal
quadrupole values are found for minimising the momen-
tum compaction factor at all orders. In addition, a relatively
low magnetic field (high bending), minimises the energy
loss combined with a choice of small θ (large number of
short dipoles), which would lead to a decrease of δεx

εx
. We

should point out that no non-linear field components, in-
cluding magnet fringe fields were considered. This would
be the next step of this study. Even at this stage, though,
this analysis gives us confidence that there is a large param-
eter space for achieving the optics design for isochronous
delay loop, with minimal perturbation of the beam distri-
bution
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