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Abstract

The main goal of this project is to investigate the Schot-
tky noise of an ion beam in the frequency range from 3 to
5 GHz. In order to accomplish this task, a pickup design is
required. For an efficient study of this Schottky noise the
pickup sensitivity for low beta must be increased. A design
for such a problem has been developed in [1] for a fixed
beam velocity but can also be used for variable beta by us-
ing a tunable material (ferroelectric) inside the waveguide.
Since such tunable materials like for instance BST (Bar-
ium Strontium Titanate) are lossy, the impact of dielectric
losses on the pickup sensitivity will also be investigated in
this work. Additionally to the classical parameter studies
where multiple simulation runs based on the original nu-
merical model are initiated to characterize the various de-
sign parameters it is also possible to utilize a reduced model
instead. In particular one is interested in a fast evaluation
of the frequency response while taking also material varia-
tions into account. In this work, a multivariate parameter-
ized dynamical system is set up and used complementary
to the full model for the required beam characterization.

INTRODUCTION

The increasing of the pickup sensitivity for beams mov-
ing with a velocity below the speed of light is the main
motivation of this project. However the design to develop
for this purpose must be operational for variable beam ve-
locities. This leads to the use of a tunable material in the
waveguide to match the phase velocity of the wave to the
beam velocity (see figure 1). In the first part of this work
the simulation results of the structure depicted in figure 1
will be presented while the second part will be based upon
the MOR (Model Order Reduction) as mentioned in the ab-
stract.

Figure 1: Pickup design for variable beta from [3].
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SIMULATION RESULTS

Starting from a design for a fixed beta presented in [1],
we will present in this part of the paper the simulation re-
sults relative to the enhancement of the pickup sensitivity
for variable beam velocities as well as the effect of dielec-
tric losses on the transfer impedance of the system.

Pickup Sensitivity for Variable β

The pickup sensitivity is represented by the transfer
impedance, which is defined for longitudinal pickups as
follows [4]:

ZT =
U

Ib
, (1)

whereU and Ib are the output voltage and the beam current,
respectively. The transfer impedance for different beam ve-
locities is shown in figure 2. The dimensions of the design
depicted in figure 1 are chosen such that the response of the
system be at 3 GHz for a beam velocity equals 0.75 ∗ co,
where co stands for the speed of light. εr = 50 used in the
simulation as dielectric constant of the ferroelectric doesn’t
reflect the reality. This value is used only to test the tunable
principle but in reality the permittivity of these materials is
very high as mentioned in the next section.
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Figure 2: Transfer impedance for different beam velocities.
The relative permittivity of the ferroelectric εr = 50

In figure 2 we can see that for different beam veloci-
ties calculated with CST PARTICLE STUDIO R© [3], the
system responds at different frequencies as expected. To
explain this difference we have to look at the phase veloc-
ity vp of the propagating wave in the fundamental mode
TE10 of an unperturbed hollow waveguide, whose width a
is greater than its height b.
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vp =
ω√(

ωμrεr
co

)2

− (
π
a

)2 (2)

In Eq. (2), ω = 2πf , where f is the frequency of the wave.
μr and εr represent the relative permeability and permittiv-
ity of the material inside the waveguide, respectively. This
phase velocity as a function of the normalized frequency is
presented in figure 3.
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Figure 3: Normalized Phase velocity of a propagating wave
in the fundamental mode TE10 of an unperturbed hollow
waveguide

In the above figure it is clear to see that, the greater the
frequency the lower the phase velocity of the wave. Taking
into account that the phase velocity of the frequency 3 GHz
is matched to the beam velocity β = 0.75, the response of
the system for a beta unequals 0.75 should be at a frequency
different from 3 GHz. In order to get the response of the
system at 3 GHz for instance for beta below 0.75, one has to
slow down the wave in the waveguide. This corresponds to
an increasing of the relative permittivity εr, while for beta
above 0.75 εr must be decreased. For instance for β = 0.6
and β = 0.85, the relative permittivity εr must be equal to
55 and 48 respectively, to get the response at 3 GHz, as we
can see below in figure 4 and 5.
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Figure 4: Velocity matching for β = 0.6
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Figure 5: Velocity matching for β = 0.85

Impact of Dielectric Losses on the Sensitivity

In this section the dielectric losses in the ferroelectric are
studied at 3 GHz for β = 0.75 to see their impact on the
sensitivity of the system. Ferroelectric materials are typi-
cally nonlinear dielectrics. One of the many characteristics
of such materials is the distinct dependency of their permit-
tivity on the intensity of an applied electric field [6]. The
dielectric constant of these materials are invariably very
high, on the order of thousands to tens of thousands [6].
The most suitable ferroelectric for microwave applications
is Barium-Strontium-Titanat (BST), which in the presence
of an external applied DC-field exhibits a maximum tun-
ability reaching 80 percent [2]. The dielectric losses are
described by the so called loss tangent, which is defined as
[6]:

tanδ =
σ

ωεoεr
, (3)

where σ and εo signify the conductivity of the material and
the permittivity of free space, respectively. The transfer
impedance of the design presented in figure 1 is shown be-
low for different loss tangent at 3 GHz.
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Figure 6: Transfer impedance for β = 0.75 with different
loss tangent at 3 GHz.

In the above figure it is clear to see that the transfer
impedance considerably decreases with increasing loss tan-
gent at 3 GHz. Comparing these results with that without
loss tangent (look at β = 0.75 in figure 2) and assuming

TUPC080 Proceedings of IPAC2011, San Sebastián, Spain

1190C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T03 Beam Diagnostics and Instrumentation



that the minimum reachable loss tangent be 0.005, the re-
duction in transfer impedance then corresponds to at least
arround 40 percent. For this reason the tunable material to
use for this design must have a very low loss tangent, for in-
stance Strontium Titanate, whose minimum reachable loss
tangent in the frequency range 1...10 GHz is arround 0.002
[5].

PARAMETRIC MODEL ORDER
REDUCTION

The particle beam velocities in the beam pipe can be
modeled by respective permittivities εi. Different reso-
nance curves result for each εi. With an appropriate εtune
for the tunable material, the resonance frequency can be
again shifted to f = 3 GHz. The appropriate ε3 GHz

tune can
be characterized by performing a parameter sweep in CST
MWS over a relatively wide range of εtune in order to re-
strict the search range. The exact ε3 GHz

tune is found by doing
an optimization in MWS over this small range. The time
consuming parameter sweep in MWS can be replaced by
multivariate MOR techniques.

This method uses the Maxwell Grid Equations (MGE)
which describe the device and which have been obtained
by using the Finite Integration Technique [7]

CFIT
�e = − d

dtMμ
�

h, SFITMμ
�

h = 0,

C̃FIT
�

h = d
dtMε

�e +
��

j s, S̃FITMε
�e = 0.

(4)

The matrices CFIT, C̃FIT and SFIT, S̃FIT are discrete
topology matrices representing the curl and divergence op-
erators, respectively. The Mε,Mμ are diagonal matrices
which contain the mesh geometry and the material prop-
erties. The MGE are used to define a system with input
i, output u, a state vector x and system matrices A,B,C.
This can be achieved by substituting

�

h in (4), resulting in

(Mεs
2 + C̃FITM

−1
μ CFIT)︸ ︷︷ ︸

A(s,εtune)

�e = −s
��

j s (5)

in the frequency domain. The input at the ports are defined
in terms of a matrix B and the generalized current i, i.e.
−��

j s = Bi. In addition, �e represents the state vector, thus
x = �e. Analogously, the output is defined in terms of the
vector x and a matrix C. The resulting system is

A(s, εtune)x = sBi, u = Cx, (6)

with transfer function Z(s, εtune) = CA−1(s, εtune)B.
MOR aims to reduce this typically very large n dimen-
sional system (6) to an m�n dimensional system.

For this, the solution vector x of (6) is restricted on
a space spanned by orthonormal trial vectors v1 . . .vm.
With V = [v1 . . .vm] we substitute x = Vx̂.

Âx̂ = sB̂i, u = Ĉx̂ (7)

with Â = W∗AV , B̂ = W∗B, Ĉ = CV∗B and transfer
function Ẑ(s, εtune) = ĈÂ−1(s, εtune)B̂. The matrices V

and W are chosen such that the moments of the original
and the reduced order transfer functions are matched with
respect to both s and εtune. The procedure is described
briefly in [8] and in more detail in [9].

Once the projection matrices are set up, which is the
most time consuming part in MOR, the s-parameter curves,
resulting from the respective Ẑ for each εtune are calculated
within seconds, and are thus faster compared to the MWS
parameter sweep. For example, for a fixed εi = 2.37 the
parameter sweep of εtune between 34 . . .41 using MWS
2011 takes tMWS ≈ 1h. On the same machine, the mul-
tivariate MOR, which is implemented in MATLAB, takes
tMOR ≈ 25min to calculate V and to do the sweep.

SUMMARY

In this work it has been demonstrated that it is possi-
ble to increase the pickup sensitivity and to tune the design
to different beam velocities, but the biggest difficulty for
the realisation of this pickup design will be the dielectric
losses in the material. For this reason the tunable mate-
rial to use for this design must have a very low loss tan-
gent, for instance Strontium Titanate as mentioned at the
end of the second section. The classical parameter studies
which require multiple simulation runs based on the orig-
inal numerical model in order to characterize the various
design parameters have been compared with studies based
on reduced order models. A fast frequency response eval-
uation under consideration of material variations has been
achieved. Thus, the parameter sweep required for an esti-
mation of the tunable material range, before its optimiza-
tion, can be replaced by a faster parameter sweep with the
help of MOR.
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