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Abstract

One of the systems protecting CERN’s Large Hadron

Collider (LHC) is the Beam Loss Monitoring system

(BLM). More than 3600 monitors are installed around

the ring. The beam losses are permanently integrated

over 12 different time intervals (from 40 microseconds to

84 seconds). When any loss exceeds the thresholds defined

for the integration window, the beam is removed from the

machine. Understanding the origin of a beam loss is crucial

for machine operation, as it can help to avoid a repetition

of the same scenario.

The signals read from given monitors can be considered

as entries of a vector. This article presents how a loss map

of unknown cause can be decomposed using vector based

analysis derived from well-known loss scenarios.

The algorithms achieving this decomposition are de-

scribed, as well as the accuracy of the results.

VECTOR DECOMPOSITION

Principle

Let’s consider an ensemble of m monitors, each of them

associated with one dimension of a m-dimensional vector

space. Any loss profile can be expressed as a vector on this

space: each coordinate of this vector is the value of the loss

recorded by the corresponding monitor.

Let’s consider a group of n known loss scenarios, and

the corresponding n vectors (�vi) expressed on the m-

dimensional vector space (n < m). All vectors only have

positive coordinates: the losses are always positive. These

vectors can span a subspace of the original vector space

but they are not a base: they are neither independent nor

orthogonal. Let’s also consider an unknown loss profile,

and the corresponding unknown vector �X .

The idea here is to find a linear combination of the vec-

tors (�vi) that will recompose the vector �X:

∑

i

fi · �vi ≈ �X

where the factors (fi) are the scalars of the linear combi-

nation. They form a vector of dimension n, noted �F .

The error on the decomposition can be estimated with

the difference between the recomposition �X ′ = M · �F and

the original vector �X:

e = | �X − �X ′| (1)
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Singular Value Decomposition (SVD)
The problem can be expressed as the matrix equation:

M · �F ≈ �X (2)

M is the matrix formed by the known vectors (�vi), and we

want to determine �F , the factors of the decomposition.

The matrix M must be inverted such that:

�F ≈ M−1 · �X

One of the techniques used here is called Singular Value
Decomposition (SVD) and is the generalisation of the diag-

onalization of a square matrix, for a non-square matrix.The

decomposition is the following [1]:

M = U · Σ ·WT (3)

• M is the original matrix, of size m× n;

• U is an orthogonal unitary matrix, of size m×m;

• W is an orthogonal unitary matrix, of size n× n;

• Σ is a non-square diagonal matrix, of size m× n.

Σ is such that only the diagonal elements are non-null (n
in total) (see Fig. 1). These values (λi) are unique, sorted

in decreasing order and are called singular values.

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 · · · 0
.
.
.

. . .
.
.
.

0 · · · λn

0 · · · 0
.
.
.

.

.

.

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: Structure of the Σ matrix, for n < m. All values

are null, apart from the diagonal λi = (Σ)i,i.

U and W are orthogonal matrices: they generate an or-

thonormal base of the corresponding N -vector space (N =
n or m). These vectors are not unique.

Once the matrix Σm×n has been created, the pseudoin-
verse Σ+

n × m can be calculated. All values are null, apart

from the diagonal ones which are: (Σ+)i,i =
1
λi

for λi �=
0. The pseudoinverse of M is then: M+ = W · Σ+ · UT .

Gram-Schmidt process
Another way to find the factors of the linear combina-

tion is to project the original vector �X on the vectors (�vi).
Since the vectors (�vi) don’t form a base of the m-vector

space, the decomposition is not unique. In order to have
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a unique projection, an orthogonal base is needed. The

Gram-Schmidt process is a technique creating an orthog-

onal set of vectors from a set of non-orthogonal vectors.

The technique is to remove the contribution of all previ-

ous vectors from the current one. The contribution is the

projection of one vector another, calculated with a scalar

product. The result for one vector is:

�vi
′ = �vi −

∑

j<i

(�vj · �vi) · �vj
||�vj ||

Only the first vector is left unchanged. The result is a

set of orthogonal vectors (�vi
′) on which the original vec-

tor �X can be decomposed. The vectors (�vi) are ordered

by “closeness to �X” (in the sense of the scalar product)

before the Gram-Schmidt process. The vector �vi which is

the “closest” to �X (i.e. the one that maximizes �X · �vi for

0 ≤ i ≤ n) will give the highest contribution in �X ′.

Comparison of the two methods
The main drawback of the SVD is that the factors can

have negative values, which has no physical meaning. The

error on the recomposition is usually small: | �X− �X ′| < 0.1
The main drawback of the GS process is that one factor

usually dominates the others, and the error is higher than

with the SVD. However, the results are always physical.

IMPLEMENTATION OF VECTOR
DECOMPOSITION

Choice of beam loss scenarios
The goal of this work is to recognize patterns in the

losses. The choice was made to start with the typical loss

scenarios at Point 7 of the LHC, where most collimators

for horizontal (H) and vertical (V) cleaning are installed.

The chosen loss scenarios are the verification measure-

ments of collimation cleaning called loss maps (see Fig. 2).

There are four cases: B1H, B1V, B2H, B2V.

The choice was made to normalize all vectors so that

they have a euclidean norm equal to 1 in the m-vector

space. This takes into account the normalisation by beam

intensity, assuming that losses are proportional to intensity.

All 2011 loss maps were gathered, normalised and aver-

aged to create the reference vectors.

Choice of the list of BLMs
Here, the interesting BLMs — the ones carrying infor-

mation about the type of loss — are the BLMs that have a

different signal depending on the case. When considering

all cases at the same time, the relevant BLMs will be the

ones with a high value of normalised standard deviation.

When a monitor for one beam is selected, the correspond-

ing monitor for the other beam must be selected as well,

because the layout of the LHC is symmetric for beam 1

and beam 2. In total, 42 monitors were selected, mostly

around primary and secondary collimators.

Figure 2: Example of one set of loss maps for resonance

crossing (2 planes and 2 beams) measured in point 7 of

LHC. All vectors are normalized so they have a euclidean

norm of 1. The order of the BLMs is conserved. Note that

only a few BLMs present a significantly different signal

between horizontal losses and vertical losses (such as the

BLM associated with the vertical TCPs, #18 and #114).

Reproducibility
Recognizing patterns in the losses is possible if standard

loss scenarios can be defined. The reproducibility of the

patterns can be evaluated by checking loss maps taken in

similar conditions over time (see Fig. 4). The relative stan-

dard deviation is smaller than 5% for all selected BLMs.

Figure 4: Loss maps for B2 horizontal taken in April and

May 2011 (6 in total). The norm of each vector is nor-

malised to 1. The stars represent the normalised standard

deviation for the selected BLMs, on the right axis (blue).

Each one is smaller than 5%.

Centers of Mass
The result of the decomposition — which vector dom-

inates the considered loss — can be cross-checked using

only the horizontal and vertical TCPs, by calculating the

position of the center of mass (CoM) between the corre-

sponding BLMs. The studies showed that the signal at the

H collimators had to be compensated for the signal at the

V collimators by a factor α � 2 to account for the develop-

ment of the secondary shower from one BLM to the next.
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Figure 3: Results of different decomposition algorithms versus time, for the period of collision for physics (“stable

beams”) run of the 21st of May 2011 (fill #1785). Left: Gram-Schmidt algorithm; right: Singular Values Decomposition.

The loss was dominated first by B1H, quickly turning into B2H. The centers of mass give the same result.

The values are:

CoMH/V =
(1 + α)(v1 + v2)− (h1 + h2)

h1 + h2 + (1− α)(v1 + v2)
(4)

CoM1/2 =
(h2 + v2)− (h1 + v1)

h1 + v1 + h2 + v2
(5)

RESULTS OF THE DECOMPOSITION
An example of the results is presented in Fig. 3. The er-

ror is calculated with Eq. 1 and displayed by the red curve.

All techniques give the same results: the loss was first dom-

inated by B1H, and evolved quickly into B2H.

Validation of the results
All losses appearing in the LHC come from protons lost

from the beam, mostly on collimators. The norm of the loss

vector including all LHC BLMs should — if no important

loss location is missed, and not too many losses are double-

counted — be proportional to dI
dt . In addition, the loss rate

dI
dt is measured to be mostly proportional to the intensity I .

Fig. 5 shows that the norm is proportional to the intensity.

Figure 5: Correlation of the norm of the loss vector (for

all BLMs in LHC) vs. intensity in both beams. Only the

“average” value of the norm correlates with the intensity.

The points for higher values of the norm correspond to oc-

casional higher losses, as opposed to “regular” losses that

are proportional to the number of protons.

When the two beams have different loss rates dI
dt , the de-

composition should be dominated by the beam with higher

loss rate. This is also shown by the correlation between

the CoM for the derivatives of the intensities of both beams

and the CoM1/2 as described in Eq. 5 (see Fig. 6).

Figure 6: Correlation of the centers of mass for B1 / B2

and the center of masses for the derivatives of the intensity

of the two beams. -1 represents a loss entirely dominated

by B1; +1 a loss entirely dominated by B2. The selected

data come from a period where the variation of intensity

was higher for B1 than for B2, during the fill #2001.

Conclusion
The first results of the series of mathematical operations

referred to as vector decomposition could be linked to sim-

pler physical values such as intensity. This allows some

level of confidence on the ability of these methods to sep-

arate the types of losses in the LHC. These methods could

be used for beam los diagnostics in real time in the LHC.
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