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Abstract 
Silicon Photomultipliers (SiPM) are interesting detectors 
for beam diagnostics applications due to their reduced 
dimensions and costs, and higher photon detection 
efficiency. Possible applications include longitudinal 
beam profile measurements by synchrotron light imaging, 
detection of optical transition radiation for energy 
spectrum measurements and medical imaging. However, 
quantitative measurement with SiPMs are jeopardized by 
the systematic reading error due to Optical Cross-talk 
(OC), i.e. optical coupling between neighbouring diodes 
in the array. OC results in overestimation of the 
impinging light level, and reflects the probability of a 
triggered avalanche creating a photon of suitable energy 
and direction to fire a second avalanche in another diode. 
In this paper, we derive a generalized response 
distribution for SiPM in presence of OC noise, which 
overcomes the limitations of assumptions currently made 
in literature and provides a correction of the SiPM 
response distribution valid for arbitrary large levels of 
OC. 

INTRODUCTION 
Sensors capable of detecting single photons have found 
different applications in diverse fields, including beam 
loss detection in particle accelerators [1]. The need to 
reduce the detector dimensions requires the use of small 
area, highly sensitive detectors that combine integrated 
readout circuitry functionality in a cheap fabrication 
process. In addition, small area detectors can be easily 
integrated in a dense arrays and be easily coupled with 
optical fibers. 
In the last decade, bi-dimensional, closely packed arrays 
of up to 500 independent Single Photon Avalanche 
Diodes (SPAD) per square millimetre have been reported 
and are now widely available commercially. The SiPM 
retains the photon counting ability of the SPAD while 
outperforming it dramatically for dynamic range and 
recovery time due to the large number of independent 
cells. Nevertheless, SiPM do suffer from erroneous 
counting due to dark noise effects, mainly caused by three 
phenomena: 
1. electron-hole pairs created in the depletion layer by 

random thermal ionization (dark count). 
2. parasitic avalanche triggering by photons created 

during a primary avalanche and migrated to a 
neighbouring cell (OC). OC has been reported to be 

sensibly reduced for SiPM featuring optical trenches: 
strips of material with different refraction index 
placed between neighboring cells, which deflect 
photons away from the active area [2] .  

3. time delayed release of a hot carrier by a trap level 
due to imperfections in the lattice, leading to a time 
delayed second avalanche phenomenon (after-
pulsing). 

Of these noise sources OC in particular is neither 
negligible for relatively large signals which cause 10 or 
more cells to fire, as for dark noise, nor linked to the 
timing of the acquisition system used, as for afterpulsing. 
Furthermore, it modifies the response of the SiPM leading 
to an overestimation of the impinging light level. Only 
one main study has been published to date, by 
Vinogradov and co-workers [3], which tackles the issue 
of creating a reliable theoretical cross talk model to 
correct for the light level overestimation. 
In that same work, Vinogradov and co-workers show that 
the event spectrum of a SiPM is not distributed in a 
Poissonian fashion, but undergoes a shift towards higher 
order events (where by order of an event is intended the 
number of avalanches which form it), leading to an 
overestimation of the light signal, and a set of equations is 
provided which describes the modified probability 
distribution which originates the spectrum. 
However the model relies on the assumption that each 
primary avalanche can only create one single secondary 
avalanche with a probability p. This secondary can in turn 
create a tertiary avalanche with the same probability p and 
so on until, with probability 1-p no additional avalanches 
are created: this path of reasoning leads to the 
establishment of a coupled Poisson-binomial distribution 
for the expected spectrum of the device. The physics of 
the OC phenomenon, however, lies in the creation of 
secondary avalanches due to optical photons created in 
the depletion layer of a single SPAD cell by a 
recombining charge pair while an avalanche event is 
unfolding. There is no physical reason why each 
avalanche should create only one OC photon; instead, 
being a discrete random event depending on a very high 
number of trials (the number of charged pairs which can 
possibly recombine) each with a low probability of 
success, its description fits perfectly the Poisson statistics 
definition, and a full theory of OC should allow for each 
SPAD cell to create n secondary avalanches via optical 
photons with n being Poisson distributed. This model 
would then reduce to the binomial model for low OC 
rates, as the Poisson distribution approximates the 
binomial distributions for  approaching zero. 
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THEORETICAL MODEL  
In what follows, we present a more realistic theoretical 
model for OC which improves the precision on light level 
measurement. The model makes use of the following 
assumptions: 
1. Each primary avalanche can create any number of 

secondary avalanches. The distribution of the random 
variable indicating the number of secondary 
avalanches created will be Poissonian, with average 
value .  is considered to be characteristic of the 
particular device and have no further dependencies. 
Each secondary avalanche will also have the same 
Poissonian probability of triggering more avalanches, 
which will be inturn able to produce more avalanches 
with a Poissonian probability distribution, until all 
avalanches spontaneously create 0 further 
avalanches. 

2. The light level is low enough that saturation effects 
(i.e. lowering of the probability of cross talk p due to 
the fact that neighbouring cells have already fired and 
are therefore insensitive) can be neglected. 

In the following, Di indicates the probability of an 
avalanche to create i secondary avalanches. Since this is 
Poissonian distributed we will have for Di: 
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We can then calculate the probability Pm-n that m initial 
avalanches create n more avalanches. Pm-n will be 
composed of several addends, each given by the product 
of the probabilities of each of the m initial avalanches to 
create a number of additional avalanches so that the total 
number of secondary avalanches produced amounts to n. 
This is expressed by a product of m terms (one for each 
initial avalanche), each of which being given by Da(i), 1 ≤ 
i ≤ m; with the indexes a(i) representing the number of 
secondary avalanches created by the ith primary 
avalanche. Since Pm-n expresses the probability of n 
secondary avalanches being created, the indexes a(i) need 
to add up to n. Furthermore, one has to take into account 
in a summation one of these products for each of the 
possible sets of indexes a(i) giving n as total. These 
conditions can be written as: 
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This expression is valid for every m>0 and every n≥0. We 
note that: 
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Pm-n expresses the probability that m initial avalanches 
create n more, but says nothing on what these n more will 

do. We therefore introduce the probability Cm-n that m 
initial avalanches create exactly n more avalanches, 
meaning that all the secondary avalanches created are 
then extinguished by not creating any more secondaries in 
turn. This can be expressed in terms of the probabilities 
Pm-n as the product of the probability of m events creating 
a1 more, times the probability of these a1 more events to 
create a2 more and so on, until n more avalanches have 
been created, say at the kth step; and finally times the 
probability of ak events to create 0 more, hence ending the 
avalanche process. We note that should, at any time in 
this cascade, 0 further events be created, the process 
would stop. Thus the k steps can never be more than n, in 
which case all indexes ai, 1 ≤ i ≤ k would be 1. We can 
moreover assume these steps to be always exactly n, 
provided that if one of the indexes is 0, all the following 
will be 0 as well: this way, all the probabilities following 
the first null index will be expressed as P0-0 = 1, and 
hence do not contribute to the product. Finally, the 
probabilities relative to each possible combination of 
indexes ai have to be added together. Thus, the probability 
Cm-n can be expressed as: 
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Where the coefficients Gm-n can be calculated with a 
computer program making use of partition mathematics. 
We can now express the probability distribution expected 
in presence of strong OC noise, in terms of the parameters 
 and  of the two Poisson distributions for light input and 
cross talk noise respectively. 
The probability of observing an nth order event will be 
given by the probability of n events arising from primary 
avalanches, times the probability of these events not to 
create any OC secondary, plus the probability of m 
primary events arising times the probability of these m 
primary events to generate exactly n-m secondary 
avalanches, summed over all the values of m s.t. 1 ≤ m < 
n. 
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Note that this distribution correctly reduces to the Poisson 
distribution in  if the probability of creating secondary 
avalanches is null (i.e.  = 0). 
In order to compare this description of the cross talk 
effect, which we will refer to as double-Poissonian with 
the one presented by Vinogradov and co-workers, which 
we will refer to as Poisson-Binomial, it is necessary to 
choose the values of  and p so that the expected values of 
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the two distributions are equal, calculating the expected 
value of the distribution in eqn. 4 directly from the values 
of the computed distribution.  
Fig. 1 shows examples of this corrected distribution for 
different values of , whilst Fig. 2 shows a comparison 
with the corresponding uncorrected Poissonian 
distribution and with the Poisson-Binomial distribution 
derived in the first part of the paper, with p chosen as 
described above. 
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Figure 1: Uncorrected Poisson distribution (square 
markers) and three double-Poissonian distributions (round 
markers) for increasing value of 0.15 (pink), 0.3 
(yellow), 0.5 (light blue). For all cases  = 5. 
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Figure 2: Uncorrected Poisson distribution (square 
markers) with  = 5 and both Poisson-binomial 
(triangular markers) and double-Poissonian (round 
markers) distributions, with  = 0.2 (violet) and 0.5 (pink) 
parameters p and  chosen so that the expected value of 
each distribution is equivalent. 

 
It can be seen from the plots how the double Poissonian 
distribution features a behaviour qualitatively similar to 
the binomial-Poisson distribution, in that it has a longer 
higher order events tail as compared to the uncorrected 
distribution, with this difference being even more 
pronounced for the double Poissonian than for the 
binomial-Poissonian. 
In order to evaluate which difference to the measurement 
is made by the use of the more complex formulae for the 

double Poissonian, we fitted a double-Poissonian 
distribution of known parameters  and  with a binomial-
Poisson distribution with parameters b and pb. The 
percentage difference |-b|/ gives then the error on , 
and hence on the measurement of the impinging light 
intensity, due to use of the simplified cross talk effects 
theory based on the binomial Poisson distribution. It is 
observed that the error increases both with increasing 
lambda and with increasing OC probability , and it can 
be concluded that the binomial-Poisson distribution is a 
good enough approximation of the actual SiPM spectral  
distribution at medium light levels operation (about 50 
cells firing on average) only for values of  (expected 
value of the number of secondary avalanches created by a 
single primary) lower than 0.3. Beyond these values, the 
error in estimation of light level due to use of the 
binomial-Poisson distribution is larger than 10%. 
Therefore, it can be concluded that the simplified model 
suggested by Vinogradov and co-workers constitutes a 
good enough approximation for small area SiPM, whose 
OC has been reported to be as low  1% (  ≈ 0.01) thanks 
to improved manufacturing technologies; whilst the same 
model presents significant errors for the analysis of large 
area SiPM, which are attracting much interest for 
applications in Positron Emission Tomography, where the 
OC can be as high as 30-50% (  up to 0.5 ) [4]. 

OUTLOOK AND CONCLUSION 
In this contribution we have presented an original 

theory accounting for the effects of OC on the spectral 
distribution of SiPM signal. We have shown this theory to 
rely on less stringent assumptions than the previously 
available theory by Vinogradov and co-worker. The 
suggested theory leads to shallower probability 
distributions, whose deviation from the mathematically 
simpler theory of Vinogradov becomes relevant for 
medium levels of impinging radiation and devices subject 
to higher OC effects. Examples of distributions derived 
from the proposed theory have been shown and compared 
with the alternative theory. 
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