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Figure 3: BPM test stand showing X-Y stage at right with 
a mounted BPM. The 160 micron wire stretched between 
the RF cones at both ends of the system simulates a beam. 

matching from the 50 Ω transmission line to the nominal 
200 Ω of the single conductor (Fig. 4). 

The electron beam is simulated with a #34 AWG 
enamelled magnet wire which has a diameter of 160 
microns and is comparable to typical beam sizes in 
CEBAF. The wire is soldered to the center conductor of 

  

 

Figure 4: Conical coaxial launcher for generating a 
surface travelling wave to simulate an electron beam. 

the cones at either end of the test stand. One end is 
terminated to a 50 Ω load while the other end is 
connected to an RF source. 

The stepper stand is capable of moving the BPM in the 
horizontal or vertical plane in 10 micron steps and across 
the full aperture of the BPM. The Test Stand was used to 
take data on an M20 style BPM across the rotated X mid-
plane with 200 micron step size to ±21 mm (Fig. 2). The 
raw wire data was processed using the difference/sum 
method and shows that the system behaves linearly to 
about ±8 mm. 
 

Poisson Model 
A two-dimensional electrostatic model was developed 

using Poisson [5]. A potential of 1 Volt was placed on a 
single electrode with the outside of the can grounded. The 
potential map was calculated across the interior of the 
BPM (Fig. 5). Using Green’s reciprocity theorem [6] we 
can infer that the simulated voltage at any point within the 
BPM is simply the voltage that would be induced on the 
antenna. Potential maps for the other three antennae are 
generated through rotations using the inherent symmetry 
of the BPM. 

 

 

Figure 5: Two-dimensional potential map of the BPM. 

A series of points across the X mid-plane were 
simulated using the potential maps and the difference/sum 
method. The results are shown in Fig. 2 and compare well 
with the Stretched Wire Test Stand data. Poisson also 
predicts that the BPM is linear to about ±8 mm. At large 
amplitude the nonlinearity of the system is also observed. 

CORRECTION OF BPM NONLINEARITY 
The Poisson model was applied across the full aperture 

of the BPM to simulate the nonlinearity within a square 
grid of points (Fig. 6) between the antennae. For each 
point within the grid a spline interpolation was performed 
to calculate the potential on each wire based on the 
Poisson model. The difference/sum method was then 
applied using the geometrical constants from the 
Stretched Wire Test Stand data to create a 2-dimensional 
map of what would be measured with the linear method. 

Proceedings of IPAC2011, San Sebastián, Spain TUPC172

06 Beam Instrumentation and Feedback

T03 Beam Diagnostics and Instrumentation 1441 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)



 

Figure 6: A 2x2 cm square grid of points for seeding the 
Poisson simulation. 

The simulations were done in the rotated frame which 
places the antennae at the top, bottom, left and right of the 
grid. Significant pin cushioning of the linear map is 
observed (Fig. 7). 
 

 

Figure 7: Beam position of square grid of points after the 
difference/sum method is used to calculate the position. 

A correction of the distortion is made by generating a 
pair of two-dimensional polynomials. The square grid of 
points and the values from the linear method are used to 
calculate the coefficients in a least squares sense and then 
applied to the distorted position map. The corrected grid 
of points is shown in Fig. 8. The precision of the 
correction is gauged by plotting the absolute value of the 
difference between the square grid of points and the 
corrected grid of points (Fig. 9). The method recovers the 
original grid to better than 100 microns across the entire 
grid of points. 

 

Figure 8: Corrected grid of points after applying a two-
dimensional 11th order polynomial to the linear data. 

 

Figure 9: Colour map showing the precision of the 
polynomial correction for the X-plane. The Y-plane has 
similar results. 

CONCLUSION 
The nonlinearity of ¼ wave antenna-style BPMs has 

been modelled and measured with good agreement 
between simulation and test stand data. An algorithm was 
applied to correct for the instrumental nonlinearity with 
better than 100 micron precision over a 2x2 cm grid of 
points. 
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