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Abstract 
Energy Recovery Linacs (ERLs) are high potential 

drivers for light sources based on laser Compton 
scattering with high brilliance photon beams and sub pico 
second time structure [1]. We report on developments for 
an advanced ERL design, which allows the recovery of 
nearly full electron beam energy up to the limits set by the 
energy width of the beam. This “Full” Energy Recovery 
Linac (FERL) allows a substantial reduction of the 
complexity of the accelerator systems resulting into a 
very compact light source design suitable for industrial 
and medical applications. 

INTRODUCTION 
Beam energy recovery allows the acceleration of high 

beam currents with low rf power consumption. This 
statement is valid only for the recirculating part of the 
accelerator. The injector however accelerates the full 
beam current at high rf power levels up to the funnelling 
energy in the range of 5 to 15 MeV. This results in two 
parallel developments for ERL accelerator structures and 
sub systems. The first kind of structures handles low rf 
power at high accelerating gradients in the recirculating 
part of the accelerator. The other kind of structures has to 
handle with high rf power levels at small gradients. 
Besides that one has to provide also both high and low 
power rf amplifiers and couplers. 

The FERL design [2] integrates the injector into the re-
circulating beam path (s. Fig. 3). Coaxial injection avoids 
the problem of beam funnelling at multi MeV energy 
level for emittance preservation. Since initial and 
recirculating beam run parallel from the starting point, 
there is no need for dedicated high power rf structures at 
the injector level. 

Due to the low injection energy the extraction energy 
can be reduced also. The energy limit is the energy width 
of the beam determined by longitudinal beam dynamics 
and the energy loss by Compton scattering. Simulations 
show the feasibility to reduce the energy at the beam 
dump to less than 0.5 MeV. This apparently reduces the 
radiation power and energy at the beam dump by more 
than a factor of 10. 

SRF GUN INJECTOR 
The beam is injected into the FERL by a 

superconducting rf gun (SRF gun) with a tubular cathode. 
The special cathode geometry allows a coaxial injection 

of the initial beam to the recirculating beam. The srf gun 
design is based on a 1.3 GHz 3 ½ cell cavity with TESLA 
geometry with a thermally isolated photocathode plug 
[3, 4] (s. Fig. 1). The thermal insulation compared to the 
surrounding cavity allows the extension of the cathode 
diameter sufficiently for parallel guidance of the injected 
and the re-circulated beam without compromising the 
cryogenic losses of the SRF gun.  

The cathode plug is made of OFHC copper hold by a 
liquid nitrogen cooled support structure. The rf surface of 
the cavity and the plug are separated by a 1 mm vacuum 
gap. A rf choke filter avoids rf power propagation through 
the gap towards the direction of the backward beam tube. 
A special choke design using liquid nitrogen (LN2) as 
dielectric and coolant is integrated into the cathode 
support structure. The cathode has two elliptical 
photocathode layers on its cavity facing surface,  placed 
symmetrically on both sides of the median aperture of the 
cathode plug (s. Fig. 2). The recirculating beam is 
directed through the central aperture from the back side of 
the gun.  

 
 

Figure 1: Cross section of the SRF gun cavity. 

 

Figure 2: Copper cathode plug. 

 

__________________ 
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where any beam loss is critical. For bunch charges with 
nearly negligible space charge forces a deceleration to 
250 keV showed to be feasible for our simplified 
simulation setup. 

 

 
Figure 5: RF field of reduced beta end cell (π-mode).  

HOM DAMPING 
An efficient damping of higher order modes (HOMs) is 

essential to shift the beam break-up limit of ERLs as for 
FERLs to high average beam currents in the range of 
several 100 mA. Current HOM damper designs contribute 
significantly to the complexity of the accelerator 
structure’s rf design and resulting costs. A new design 
approach combining the function of a coaxial funda-
mental mode power coupler with HOM extraction  
(s. Fig. 6) is analyzed. Similar designs were already tested 
either for fundamental mode coupling or for HOM 
extraction (s. e.g. [6]) without combining both functions. 
The basic problem is to realise a sufficiently low external 
Q for the HOMs (103 to 105) and to provide a high 
external Q for the fundamental mode (>107) the same 
time. The basic solution is to place a fundamental mode 
rejection filter near the tip of coaxial coupling antenna. 
The HOMs are extracted through the coaxial line to a rf 
load outside the cryostat, which is isolated from the 
fundamental mode frequency by a high pass rf filter.  

The choke filter uses liquid nitrogen as coolant and 
dielectric. LN2 is an excellent dielectric with a dielectric 
constant εr=1.54 and a very low tan δ=5.2*10-5 in the high 
frequency range [7, 8]. The choke resonator volume is 
separated from the beam line vacuum by a cylindrical 
Alumina ceramic. Using LN2 as dielectric has two main 
advantages. Firstly it is an efficient coolant removing the 
rf  losses from the copper choke resonator and cooling it 
to a temperature level, which can be maintained easily in 
the vicinity of the superconducting cavity surface without 
causing excessive thermal radiation. Secondly LN2 as 
liquid dielectric suppresses multipacting inside the choke 
resonator, which limits the rf performance of vacuum 
filled choke designs. A third benefit is the in situ tunabilty 
of the choke filter by changing the cooling from LN2 to 
gaseous nitrogen. The dielectric constant changes from  

εr=1.54 to approx. 1, which detunes the choke resonator 
more than 10 times its -20 dB bandwidth. This results into 
a strong over coupling of the accelerator cavity usable for 
rf processing. 
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Figure 6: Layout of LN2 choke HOM damper. 
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