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Abstract

Recently acquired turn-by-turn data of the LHC is ana-
lyzed using the action and phase jump technique. The re-
sults of this analysis show a visible variation of the action
and phase plots at the interaction regions from which optic
error estimations can be done. In this paper error estima-
tions will be presented and comparisons with other existing
techniques in the LHC, such as the recently implemented
Segment-by-segment technique, will be discussed.

INTRODUCTION

The action and phase jump technique has been used
in the past to successfully estimate normal and skew
quadrupole components at RHIC Interaction Regions (IRs)
(see [1], [2] , [3]). This has motivated the application of this
technique on LHC orbits. In the first section of this paper,
it is shown how this technique can be adapted to estimate
and correct linear errors at the LHC interaction regions. In
the second section, action and phase jump analysis of LHC
Turn By Turn TBT data is presented and compared to re-
sults of the Segment-by-Segment Technique (SBST) which
is regularly used at LHC for optics commissioning.

CALCULATION OF CORRECTIONS
SETTINGS FROM ACTION AND PHASE

ANALYSIS

It is shown in [4] that the action and phase jump analysis
can be used to calculate the kick (θx, θy) that a particle ex-
perience due to a magnetic error. If such a magnetic error
is composed of an integrated normal quadrupole compo-
nentB1 and an integrated skew quadrupole componentA1,
these values can be determined inverting the equations:

θx = A1y(s
∗)−B1x(s

∗)

(1)

θy = A1x(s
∗) +B1y(s

∗)

wherex andy are the horizontal and vertical position of the
beam at the places∗ where the error is. This procedure can
be applied to all magnets in the interaction regions provided
that at least two beam position measurement are available
at each side of every magnet. This is not usually the case
for any accelerator. In LHC, for example, no more than 6
bpms are available for each interaction region.

∗Work supported by DIB, at National University of Colombia

It is possible, however, to consider a group of magnets
and estimate an equivalent magnetic error for the whole
group. The best choice for a group of magnets is the triplet
which is the most common magnet configuration at the in-
teraction regions. For this case, it can be shown that Eq. 1
transforms into:

θtx = At
1
y(s∗)−Btx

1
x(s∗)

(2)

θty = At
1
x(s∗) +Bty

1
y(s∗)

whereAt
1
, Btx

1
andBty

1
will depend on the individual skew

and normal quadrupole errors present in the quadrupoles of
the triplet. In practice, it is possible to estimate action and
phases before and after a particular triplet and henceθtx, θty,
At

1
, Btx

1
andBty

1
can be determined.

The last three quantities can be very useful for local cor-
rection at the IRs. Indeed, it can be demonstrated that if
s∗ is chosen at the place where the skew quadrupole cor-
rector of the triplet is located−At

1
/Lc (Lc is the longi-

tude of the skew quad corrector) is approximately equal to
the strength needed in this corrector to eliminate local cou-
pling at the triplet. On the other hand, the effects of normal
quadrupole errors in the triplet can be suppressed by chang-
ing the strengths of two quadrupoles of the triplet according
to the values ofBtx

1
andBty

1
. Such relationships are given

by:

∆k(Q1) =

Bty
1
βy(s

∗)
∫

Q2

βxds−Btx
1
βx(s

∗)
∫

Q2

βyds

∫

Q1

βxds
∫

Q2

βyds−
∫

Q2

βxds
∫

Q1

βyds

(3)

∆k(Q2) =

Btx
1
βx(s

∗)
∫

Q1

βyds−Bty
1
βy(s

∗)
∫

Q1

βxds

∫

Q1

βxds
∫

Q2

βyds−
∫

Q2

βxds
∫

Q1

βyds

where ∆k(Q1) ∆k(Q2) correspond to the values at
which Q1 and Q2 should be changed in order to com-
pensate all possible normal gradient present in the 3
quadrupoles of the triplet. Selection of the 2 quadrupoles
out of the three is arbitrary. In principle, any combination
is allowed to do the correction but some of them might be
determined with better accuracy than others.

The determination ofBtx
1

andBty
1

must be done with at
least two different orbits (Notice that there are 3 unknown
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Figure 1: LHC orbit with a maximum value at the right
triplet of IR5 in the horizontal plane and a minimum value
at the same place in the vertical plane.This is one of the 4
kinds of orbits used for error estimation at LHC IRs.

variables in the Eq. 2 unlike Eq. 1 which has 2 unknown
variables). Several simulations have shown that there are 4
kinds of orbits that allows the precise determination ofAt

1
,

Btx
1

andBty
1

. One of these orbits is shown in Fig. 1 where
it is possible to see that the orbit has a maximum excursion
of the horizontal position of the beam at the right triplet
of IR5 while the vertical position is minimum at the same
place. The other kinds of orbits correspond to the combina-
tions: maximum in the horizontal plane while the vertical
is maximum, minimum in the horizontal plane while the
vertical is maximum and minimum in the horizontal plane
while the vertical is minimum.

ANALYSIS OF EXPERIMENTAL ORBITS
AND COMPARISONS

Since 2009, several beam related experiments and opti-
cal corrections have been done in the LHC using the SBST
(see [5] and [6]). In particular, during the 2010 LHC run
the beam was squeezed to 2m in all IPs to be able to mea-
sure errors at the IRs. One of the corrections that might
be compared with the results of action and phase analy-
sis is the one done at IR5. During this experiment, cor-
rection was performed by changing the strength of two
IR quadrupoles MQXB.B2R5 and MQXB.B2L5. In this
case, the two triplets of IR5 can be defined as the group
of magnets and the equations of the previous sections can
be used to estimate the values proposed for correction in
MQXB.B2R5 and MQXB.B2L5.

Initially the idea was to select from the turn by turn data
single orbits to estimateAt

1
, Btx

1
andBty

1
. However, due
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Figure 2: The solid line corresponds to the phase analysis
of the average of all turns shown in Fig. 3 while the dotted
line corresponds to the phase analysis of a single turn.
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Figure 3: Orbits with a maximum value at the right triplet
of IR5 are selected from a single file of TBT data. In this
case, 117 orbits were found out of the 2000 turns.

to the wide band of the LHC BPMs, these orbits exhibited
a high level of noise in the action and phase plots (see dot-
ted line of Fig. 2). An average orbit can help to reduce the
noise but it cannot include all turns because it will converge
to the unperturbed small closed orbit of the accelerator. In-
stead, turns in phase can be selected from the TBT data (see
Fig. 3) to build an average orbit. The phase plot of this new
average orbit (solid line of Fig. 2) has much lower noise
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Figure 4: The equivalent kick that the orbit experience due
to errors in IR5 is plotted against the orbit position. The
slope of the linear regression (dotted line) gives directly
the values ofBtx

1
andBty

1
.

than the phase plot of a single turn orbit.
Now, orbits with the specific conditions required to esti-

mateAt
1
, Btx

1
andBty

1
(see Fig. 1) are less frequent due to

the double requirement of having maximums or minimums
at both planes simultaneously and hence much lower num-
ber of turns are found from each TBT data file. Therefore,
there are more noise in the resultant average orbits but it is
still possible to estimate the errors with the equations pre-
sented in the previous section.

The experiment under analysis has 3 different sets of
TBT data. From each set of data two errors values for each
of the 2 quadrupoles can be calculated. As consequence
there will be six different error estimations for each of the2
quadrupoles. The second row of table 1 reports the average
values obtained in this way. The uncertainties correspond
to one standard deviation of the mean.

Table 1: Estimated Corrections∆k

Analysis MQXB.B2R5 MQXB.B2L5
∗10−5m−2

∗10−5m−2

SBST 1.3 1
4 kinds of orbits 3.1± 0.3 0.64± 0.2
Approximation 3.2± 0.1 0.55± 0.1

A second approach to estimate the corrections can be
used assuming that the effect of coupling in Eq. 2 is negli-
gible. This seems to be the case for the average orbit ob-
tained from the hundred of turns shown in Fig. 3 since the
average vertical orbit is very small when compared with the

horizontal one. Under this approximation Eq. 2 becomes:

θtx = −Btx
1
x(s∗), θty = Bty

1
y(s∗) (4)

and henceBtx
1

andBty
1

can be found with one single or-
bit or one average orbit. This allows to use average orbits
made out hundred of turns. In practice, the average of tra-
jectories with a maximum at IR5 and trajectories with a
minimum at IR5 are obtained for each set of TBT data.
Therefore, for the experiment under analysis, there will be
six average orbits which lead to the six points seen in Fig. 4.
The slope of these plots give the approximate values ofBtx

1

andBty
1

which lead to the values of∆k(Q1) and∆k(Q2)
written in the third row of Table 1. These values are very
consistent with the values obtained before and the uncer-
tainty has dropped significantly thank to the bigger number
of turns used to build the average orbits.

Comparing Table 1 with the values obtained using the
SBST, there is still notable differences that cannot be ex-
plained by the uncertainties alone. Searching for possible
systematic deviations, several simulations have been done
using MADX but to this date the errors introduced in the
mad files agree well with the values obtained with software
for action and phase analysis (with and without noise).

CONCLUSIONS

The action and phase jump method have been applied
to estimate linear corrections at one LHC IR using turn by
turn data. Two different approaches have been used, one of
them considering coupling and the other without coupling
but with much better statistics. The two approaches agree
well and the suppression of noise in the second case is ex-
cellent. The comparison with the SBST might point to a
systematic problem which needs further investigation.
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