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Abstract 
The betatron oscillation amplitude dependent orbit shift 

was measured at the electron storage ring, NewSUBARU. 

The result agreed with the theoretical calculations. The 

effect of this shift on the beam injection is discussed 

using parameters of NewSUBARU and SPring-8 SR. 

Generally there exists a better side for the injection, the 

inner side or the outer side of the ring, which depends on 

the sign of the orbit shift at the injection septum.  

INTRODUCTION 

Sextupoles in a synchrotron produce an amplitude 

dependent shift of the oscillation center. However, this 

shift has importance only in special cases. One is that the 

shift can be used to detect the beam instability [1]. The 

other case is that of beam injection, whereby the injected 

beam has a large oscillation amplitude. 

One subject of this report is to give a simple analytical 

formula for the shift, which has been subsequently 

confirmed by measurement. 

Another aim is to discuss the effect of the orbit shift on 

beam injection. Generally there exists a better side for the 

injection, the inner side or the outer side of the ring, 

depending on the sign of the orbit shift at the injection 

septum. In case of the NewSUBARU, the beam is 

injected from the outer side and the shift is positive. The 

effective thickness of the septum could be reduced with 

the large oscillation amplitude of the injected beam. On 

the other hand at SPring-8 SR, the beam is injected from 

the inner side of the ring with a negative the orbit shift. In 

either case, the rings are use the optimal side for injection. 

AMPLITUDE DEPENDENT ORBIT SHIFT 

Analytical Formulae 

We define the sextupole component g as 

d x = (g /2)x
2ds  .    (1) 

Here x is the horizontal deflection angle. We will also 

use the normalized sextupole components defined by 

   Gx g x
3 / 2 ,     (2a) 

   Gy g y x
1/ 2  .     (2b) 

The linear betatron oscillation is given by 

   x = xJx cos x
    (3) 

Here, Jx is the Courant Snyder Invariant (C.S.I) of the 

horizontal betatron oscillation, which corresponds to the 

action. Substituting Eq. (3) into Eq. (1) and we obtain 

   d x = (g /4) xJx (1+ cos2 x )ds  .   (4) 

The deflection by a sextupole has two frequency 

components, the constant deflection x 0 and the deflection 

with twice the betatron oscillation frequency x 2. 

The constant deflection produces a shift of the 

oscillation center given by 

   dx0 =
x xS

2sin x

C(s,sS )
 

 

 

 

 

 d x0
,   (5) 

Here, Cx(s, sS) is the phase factor defined by 

   C(s,sS ) cos( x (s) x (sS ) x ) .  (6) 

The displacement produced by distributing sextupoles is 

   x0(s) =
x (s)

8sin x

Jx Gx (sS )C(s,sS )dsS0

L
.  (7) 

The displacement caused by the vertical oscillation 

with C.S.I of Jy can be calculated by the same manner. 

Finally, the displacement is given by 

x0(s) =
x (s)

8sin x

[JxGx (sS ) JyGy (sS )]0

L

C(s,sS )ds . (8) 

The betatron oscillation also changes the circumference, 

the averaged path-length for a revolution [2,3]. Then, 

after a single deflection, the particle would start 

synchrotron oscillation. The shift of the circumference is 

given by  

   L = 2 ( xJx + yJy ) .   (11) 

Here, x and y are the horizontal and the vertical 

chromaticities. The center of the energy oscillation is 

given by 

   = (2 / PL0)( xJx + yJy ) ,   (12) 

where p is the momentum compaction factor and L0 is 

the circumference. Over a long range, averaged over a 

synchrotron oscillation period, a shift by the energy 

displacement should be added to Eq. (8). 

Amplitude Dependent Tune Shift 

The orbit displacement is one of the origins of the 

amplitude dependent tune shift. It goes to infinity at 

integer tune. The other origin is the second harmonic 

oscillation produced by the second harmonic deflection 

( x2). It goes to infinity for third integer tune also. Am 

analytical expression for the shift is given elsewhere 

using an action-angle formula [4]. We do not repeat this 

calculation, but it is not difficult to derive the shift using 

an x, y, s coordinate system. 

A shift in equilibrium energy can also lead to a tune 

shift. The appearance of this effect depends on the how 

the betatron oscillation starts. 

Orbit Shift at NewSUBARU 

NewSUBARU is a 1.0 – 1.5 GeV electron storage ring 
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at the SPring-8 site. Table 1 shows the basic parameters of 
the ring. The ring is a race-track type and has four-fold 
symmetry. Figure 1 shows the calculated amplitude 
dependent orbit shift in 1/4 of NewSUBARU. 

Table 1: Basic parameters of NewSUBARU 

Betatron tune: x / y 6.30 / 2.23 

Chromaticity: x / y 3.4 / 5.8 

Momentum compaction factor: p  0.00136 

Horizontal emittance 50  nm 

Septum wall from the beam center: xMAX +21 mm 

Septum thickness: xSEP 3 mm 
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Figure 1: Amplitude dependent orbit shift in 1/4 of 

NewSUBARU storage ring. The broken lines are the 

shifts of the synchrotron oscillation center. 

We measured the horizontal orbit shift of the horizontal 

betatron oscillation. The stationary stored electron beam 

was deflected by an injection kicker. The turn-by-turn 

beam position for about 40 turns after the deflection was 

recorded at 18 beam position monitors (BPM) in the ring. 

0.4% of the stored beam was lost by a deflection 

corresponds to Jx 5μm rad. The orbit was measured for 

the deflection of 80%, 50%, 30%, and 10% of that. The 

measured period (16μs) was much shorter than the 

synchrotron oscillation period (190μs), as well as that 

given by Eq. (8). 

Figure 2 shows the result. It agrees well with the 

calculations based on Eq. (8). 
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Figure 2: Amplitude dependent orbit shift. The circles are 

the measured shift and the solid line is the calculated shift 

using the analytical formula. 

The same measurement gave the amplitude dependent 

tune shift. However, it provided limited useful 

information due to large measurement inaccuracy. 

EFFECT ON BEAM INJECTION 

Basic Effect on the Beam Injection 

The effect of the amplitude dependent orbit shift on the 

beam injection is qualitatively understood as the 

following. We start with the maximum displacement of 

the circulating beam and the injection point of the injected 

beam, written as 

xMAX = JxMAX x + ( x0 / Jx )JxMAX + xBUMP  (13) 

and 

xINJ = JxINJ x + ( x0 / Jx )JxINJ + xBUMP  (14) 

respectively, with 

xINJ = xMAX + xSEP .    (15) 

Here, JxMAX and JxINJ are the maximum Jx of the 

circulating beam and Jx of the injected beam, respectively, 

and xBUMP is the injection bump height and xSEP is the 

thickness of the injection septum.  In this case JxINJ is 

calculated to be 

JxINJ = JxMAX +
xSEP

x

JxINJ + JxMAX
+

x0
Jx

 (16) 

This means that the effect of the finite septum thickness 

depends on  x0 / Jx . 

Calculation at NewSUBARU 

In this subsection, we will see the effect based on the 

results of a tracking calculation using the parameters of 

NewSUBARU. The linear dispersion is zero at the 

injection location, and the energy spread is ignored for the 

simplification of the calculation. The higher order multi-

pole field is also ignored, giving an idealized set of 

parameters are not always those used in the real injection. 
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Figure 3: Phase space contour at the injection point of 

NewSUBARU. The shaded area is the injection septum. 

Figure 3 shows the phase space contour (Poincaré map) 

of the circulating beam at the location of the injection 

point. Figure 4(a) shows the beam at the instance of the 

injection. The injection bump height was 18.2 mm, with 
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which only electrons displaced more than 4  are scraped 

by the septum. The injected electron moves along the 

edge of the other side of the septum. The trajectories of 

the circulating beam and the injected beam after the 

injection are shown in Figure 4(b). By contrast Figures 5 

(c) and (d) show the results when the septum is set at the 

inner side of the ring.  Contrary to our expectation, JxINJ 

was almost the same for both cases. 
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                     (c)                                         (d) 

Figure 4: Phase space contour at the injection point. (a) and 

(c) show those at the initial turn at the injection and (b) and 

(d) show those after the injection. The upper and lower 

figures are for injection from the outer side and inner side 

of the ring, respectively. 

Figure 5 gives explanation for this unexpected result. 

Eq. (13) is not a good approximation and xMAX less 

depends on Jx. However, when we change  x from 6.302 

to 6.207, we see a difference as plotted in Figure 5. 
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Figure 5: Jx dependence of the weighted center and the 

median of the stored beam at NewSUBARU for x =6.302 

and x =6.207. 

Calculation at SPring-8 

In SPring-8 SR, unlike NewSUBARU, the orbit shift is 

negative and the injection septum is set at the inner side 

of the ring. 

Figures 6 and 7 show the phase space contour and the 

orbit shift, respectively, illustrating that the injection from 

the inner side is better for SPring-8 SR. 

 

Figure 6: Phase space contour at the injection point of 

SPring-8 SR. 
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Figure 7: Jx dependence of the weighted center and the 

median of the stored beam at SPring-8 SR. 

SUMMARY 

We discussed the effect of the amplitude dependent 

shift of oscillation center by sextupoles. In many cases the 

injection from the side of the orbit shift would have an 

advantage but not always. 
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