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This material has been chosen for its good magnetic 
and mechanical properties. Its magnetisation curve can be 
seen in Figure 3. To achieve the design field gradients, 
current densities of up to 5 A/mm2 will be needed. This 
high current density requires a cooling system which will 
have to be integrated in the design. The most evident 
choice is using copper wire with cooling channels. 
 

 
Figure 3: B-H curve for silicon steel M400. 

 

Optimisation Procedure 
To facilitate the optimal choice of parameters in this 

multidimensional simulation space, ANSOFT 
MAXWELL allows multiple simulations to be performed 
automatically choosing the starting, final and step values 
for each variable. Each parameter was thus simulated and 
its effects independently studied. An example of an 
optimisation study can be seen in Table 1. 
 

Table 1: Parameter Values Considered for Simulations 

 

 Size Step 

Magnet aperture radius (mm) 15 - 

Winding radius (mm) 40-80 10 

Yoke outer radius (mm) 100-150 10 

Winding angle (º) 65-75 5 

Current Density (A/mm2) 0-5 0.5 

 
A brief description of the above parameters is below. 

The quadrupole configuration can be seen in Figure 4. 
- The magnet aperture radius corresponds to the beam 

pipe of the MEBT line and is fixed. 
- The winding radius is the distance between the centre 

of the quadrupole and the outermost part of the coil. 
- The yoke outer radius is the outer quadrupole radius.  
- The winding angle is the angle between the abscissa 

and the opposite side of the winding.  

 
Figure 4: Quadrupole configuration: A) Yoke Outer 
radius; B) Winding radius; C) Aperture radius; D) 
Winding angle. 

DESIGN RESULTS 
After performing the optimisation, various parameters 

can be chosen based on the simulation results. Additional 
constraints like manufacturing feasibility and mechanical 
limitations have to be taken into account. For example, 
the difficulty of the winding increases with the increase of 
the winding radius (B), and as a result the lowest radius 
that satisfies the gradient requirements is preferred. An 
example of a possible set of parameters can be seen in 
Table 2. 

 

Table 2: A Possible Set of Practical EMQ Parameters 

 

 Size 

Magnet aperture radius (mm) 15 

Winding radius (mm) 50 

Yoke outer radius (mm) 100 

Winding angle (º) 75 

Max. Current Density (A/mm2) 5 

Max. Gradient (T/m) 26.88 

EMQ length (mm) 70 

 
As expected, as shown in Figures 5 and 6, the winding 

radius and angle have a direct influence on the magnetic 
field gradient. As these two parameters increase, so does 
the gradient. This is clearly due to the fact that as the coil 
cross section area increases, more current flows through.  

Simulations have also shown that the yoke outer 
radius influence on gradient is minimal above a certain 
value, as seen in Figure 7. The slight gradient variations 
are just simulation noise caused by mesh density 
differences between the various designs.  

The gradient dependency on the applied current 
density can be seen in Figure 8, while Figure 9 shows a 
typical ANSOFT MAXWELL output of the magnetic 
field. 
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Figure 5: Magnetic field gradient with Winding radius 
(Current density = 5 A/mm2, Yoke Outer radius = 
100 mm, Angle = 75º). 
 
 
 

 
 
Figure 6: Magnetic field gradient with Winding angle 
(Current density = 5 A/mm2, Yoke Outer radius = 
100 mm, Winding radius = 50 mm). 
 
 
 

 
 
Figure 7: Magnetic field gradient with Yoke Outer radius 
(Current density = 5 A/mm2, Winding radius = 50 mm, 
Angle = 75º). 
 

 
 
Figure 8: Magnetic field gradient with Current Density 
(Winding radius = 50 mm, Yoke Outer radius = 100 mm, 
Angle = 75º). 
 

 
Figure 9: Magnetic field map of the EMQ at 5 A/mm2. 

 

CONCLUSIONS 
A very preliminary study has been started in order to 

find a suitable EMQ design for the FETS project at RAL. 
Initial simulation results indicate that in order to achieve 
the design parameters, care has to be taken when 
optimising the quadrupole geometry. However, this is 
only an initial step in the overall design process. More 
work is further needed to optimise the quadrupole 
geometry as to improve the field homogeneity, while 
considering cooling, manufacturing, mechanical and cost 
aspects of the design. A 3D model is currently under 
development. 
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