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Abstract 
In frame of the FAIR project [1] the Collector Ring is 

planned to be built for efficient cooling of antiprotons and 
rare isotopes beams. In order to accept hot antiproton 
beams coming from a separator [2] large aperture 
magnets are required. This paper examines the effects, 
which may influence on the beam dynamics because of 
large both an amplitude betatron oscillation (240 mm 
mrad) and large momentum spread (6%). Using analytic 
expressions the amplitude-dependent tune shifts driven by 
sextupole magnets, fringe field of quadrupole magnets 
and kinematic effects have been calculated. The obtained 
results are compared with numerical simulations. 
Tracking studies for the CR operated as an antiproton 
collector have been performed considering the real 
distribution of the magnetic field of the wide aperture 
quadrupole. We report on quantitative studies of the 
effects on the tune spread and its influence on the beam 
losses.  

INTRODUCTION 
In the Collector Ring [3] phase space reduction of an 

antiproton beam in the longitudinal phase space consists 
of two steps. Right after injection, the beam with a bunch 
length of 50 ns is rotated by a quarter of a synchrotron 
period within a mismatched bucket. Due to this the 
momentum spread is reduced from 6% to 2% on about 1 
ms. Then the beam is adiabatically debunched to reduce 
further the momentum spread. Afterwards stochastic 
cooling is applied. The tune spread during bunch rotation 
can cause a crossing of “dangerous” resonances that leads 
to particle losses. In this paper we elaborate on the 
various sources of amplitude-dependent tune shift and list 
the contributions from each source to the antiproton beam 
loss.  

Using analytic expressions the amplitude-dependent 
tune shifts driven by sextupole magnets, fringe field of 
quadrupole magnets and kinematics effects have been 
calculated. The obtained results are compared with 
numerical simulations.  

To make an analytical estimation of the tune shift we 
use the following expressions for the amplitude tune 
dependence [4] 
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where Jx , and Jy are the horizontal and vertical action of 
the particle respectively. The anharmonic coefficient Cii 
=Ck+Csx+Cfr includes the contribution of the kinematic 
Ck, sextupole Csx, and fringe field Cfr effects The 
analytical expressions for Ck , Csex, Cfr can be found in the 
literature [5,6]. The tune spread due to the field error 

perturbations in the main magnets is evaluated in a 
separate way using a numerical method and then 
compared with the analytical formulae.   

SOURCES OF THE TUNE SHIFT 

Sextupole Magnets 
The first source of amplitude dependent tune shift are 

the 24 sextupole magnets located in the two CR arcs, 
where the dispersion function is not zero. 6 sextupole 
families are required to control the chromaticity and the 
dispersion function close to zero in the long straight 
sections, where the stochastic cooling systems and RF 
cavities are placed. Analytically the Csx anharmonic 
coefficients can be calculated by the formulae given in 
ref. [5].  

Fringe Field 
The fringe field is another source of large amplitude 

contribution to the tune shifts. In the CR the normal-
conducting quadrupoles require a 312-mm bore, which 
leads to strong, extended fringe fields proportional to the 
poletip field of the quadrupole (0.8 T, in this ring). With 
the need to minimize arc lengths in order to have good 
properties for the stochastic cooling, the poletip field and 
the fringe fields cannot be reduced by correspondingly 
lengthening the quadrupoles. Hence the impact of 
quadrupole end fields on the performance of the CR must 
be carefully evaluated. Analytically the fringe field 
anharmonic coefficients in the formula (1) can be 
calculated by the expressions [6]:  
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βx,y and αx,y Twiss (betatron and alfa) functions of the CR, 
k1 – quadrupole strength (1/m). k' and  k'' are the first and 
second derivatives of the k. To calculate k' and  k''  each 
quadrupole magnet is represented by slicing the whole 
axial quadrupole field distribution in 100 thin segments of 
varying strength according to an Enge function with six 
parameters (ai) of the form:  
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where s is the Cartesian distance to the field boundary.  
The quantity d is the full aperture of the quadrupole.    

Kinematic Effect 
Kinematic perturbations appear even for ideal magnets 

and alignment. General, such terms become significant 
for small circular accelerators or wherever beams are 
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deflected in high fields and the beam sizes are large. The 
kinematic non-linearity arises from high order terms 
proportional to the transverse momenta px, py into the 
expansion of the standard square-root relativistic 
Hamiltonian. The first correction to the tune shift comes 
from octupole like terms: px

4, px
2py

2 and py
4. A 

transformation to action variables results in the kinematic 
anharmonic coefficients [6]: 
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the γx,y  are the usual Twiss gamma functions.  

Field Errors of Magnets  
The nonlinear fields in the magnets can be represented 

by 
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where B0 is the main field, and bn and an are the normal 
and skew multipole components. x and y are  horizontal 
and vertical displacements of the charged particles. The 
first order tune shifts can be calculated by formula [7]: 

 



9

0

,,,,
,

0
, 2 n

n
ayx

nn
byx

nyxyx aCbCdsQ 


 .      (6)  

Here the Cn coefficients are proportional to the action Jx,y 
and depend on the beam orbit.  

NUMERICAL APPROXIMATION 
To prove the analytical calculations of all anharmonic 

coefficients numerical simulations have been performed. 
15000 particles were tracked each with a different  
starting position (x,x',y,y',dp/p) within the ring acceptance 
of 240 mm·mrad  in both planes for 1024 turns. A FFT is 
performed on the horizontal and vertical turn by turn 
position data and particles fractional horizontal and 
vertical tunes are calculated.    

In the numerical simulations each magnet is 
represented by slicing the whole axial field distribution in 
100 thin segments. Each segment is represented by a 
linear transfer matrix. The quadrupole field strength of 
each segment is varied according to formula (3). The 
dipole magnet is modelled as a hard edge fringe field. 
Between slices thin lenses with zero length are 
introduced. These lenses produce the kick angle change, 
which is calculated depending on the nonlinear source. In 
case of field errors the kick angle change is  
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where α=KQds for the quadrupole magnet and α=dθ for 
the dipole magnet; ds, dθ are the length and angle of one 
thin segment. For the CR magnets the calculated field 
harmonics are given in table 1 and used in our 
simulations.  

In the case of the quadrupole fringe field the kick angle 
is calculated by [8]: 

    .12/3,12/3' 2323 yxyKyxyxKx QQ          (8) 

Table 1: Field Harmonics bn for Dipole (D) and 
Quadrupole (Q) Magnets (unit 10-4) 

n 2 3 4 5 6 7 8 9
D 6.3 0.03 1.7 ≈0 ≈0 -0.02 ≈0 -0.01 

Q 0.0 ≈0 0.01 -3.0 0.01 ≈0 0.01 10. 

 
K" is the second derivation of the quadrupole strength KQ. 
When the kinematic effect is calculated, each thing lens is  
considered as a drift space, where particle trajectories are 
transformed proportional to terms in px,y   
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The sextupole magnets for the case of a thin lens 
approximation change the particles angles by  
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m=(L/BR)d2B/dx2  is the integrated strength of the 
sextupole. δ=Δp/p. Dx is the dispersion function. 

TUNE CALCULATIONS 
The magnitudes of the anharmonic coefficients, which 

are obtained from various sources, are listed in table 2.  
The first characteristic of the CR with respect to the 
sextupole and kinematic effects is that the anharmonic 
coefficients are relatively small for Δp/p=0. Such 
coefficients are also observed in our numerical 
simulations. The quadrupole fringe field has a dominant 
effect on the tune shift compare with sextupole and 
kinematic effects.  

Table 2: Calculated Anharmonic Coefficients for the CR 
from Various Sources. δ=0  

 Cxx Cyy Cxy

Sextupole   
            analytical 
            numerical 

 
-2.58 
-3.55 

 
-1.82 
-3.33 

 
0.89 
-1.45 

Quadr. fringe 
           analytical 
          numerical 

 
15.58 
31.91 

 
25.81 
38.55 

 
19.98 
-0.16 

Kinematics 
         analytical 
         numerical 

 
1.34 
1.34 

 
4.15 
4.02 

 
1.34 
1.32 

Figures 1 and 2 illustrate the calculated horizontal and 
vertical tunes obtained by a FFT for particles with a 
different transverse staring position within the transverse  
acceptance of 240 mm·mrad and a momentum spread of 
6% for 1024 turns. In Fig.1 we present the tune spread 
due to the individual effect independently from each 
other.  These simulations allow us to identify which effect 
is dominating if there is no compensation. One can see 
that the horizontal and vertical tune spreads (ΔQh=0.031, 
ΔQv=0.036) arise from field errors of the main magnets. 
The fringe field of the quadrupole magnets has a 
dominant effect only in the horizontal plane and gives a 
tune spread of ΔQh=0.025, ΔQv=0.005. In Fig.2 the tune 
spread calculated by action of all sources before bunch 
rotation is shown for three cases (without correction and 
with sextupole correction for two sextupole settings). If 
the sextupole correction is not applied then the chromatic 
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effect of quadrupole magnets is strong and produces the 
tune spread of ΔQh=0.3, ΔQv=0.6. 

 
Figure 1: The tune spreads due to each individual effect 
independently from each other ( δ=6% ).  

    
Figure 2: The tune spreads calculated with all sources  
acting without and with sextupole correction ( δ=6% ).  

Six families of sextupole magnets are used to correct 
the chromaticity. In Fig.1 one can see that the sextupole 
correction is able to reduce the tune spreads down to 
ΔQx=0.008 and ΔQy=0.012. If we consider the action of 
all nonlinear sources the sextupole correction has to be 
optimised with respect to the minimal beam loss. As a 
first step we investigate the beam loss depending on each 
individual effect. Fig.3 shows the beam survival during 
bunch rotation over 1000 turns, when the momentum 
spread is reduced from 6% to 2%. If there is no correction  
beam loss of 23% is observed due to the action of all 
sources. One can see that the chromatic effect has the 

largest contribution to the beam loss before stochastic 
cooling stats. Other effects all together cause beam loss of 
less then 2%..  

The sextupole correction allows us to reduce the beam 
loss to 4 - 7% depending on the sextupole setting. We 
consider two sextupole settings. First, the sextupole 
magnets can be tuned to the setting that gives the small 
horizontal tune spread (ΔQh=0.01), while the vertical tune 
spread is 0.2. At this setting the beam loss is 4% after the 
first 1000 turns. But for the long term stability the 
dynamic aperture is reduced because the tune spread 
crosses the structure resonances Qh-3Qv=-10 and 
Qh+2Qv=14 (fig.2, sextupole correction-1). Second, the 
sextupole magnets can be adjusted to a setting at which 
the tune spread is about 0.02 in both planes. At such a 
setting the tune spread does not cross the structure 
resonances as shown in fig.2. But, in this case, the beam 
loss is 7% because the ring beta-functions are distorted 
for large momentum deviation. This leads to an emittance 
dilution, which cause particle loss.  

 
Figure 3: The calculated beam loss in the CR due to 
different nonlinear sources. 
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