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Abstract

The present heavy ion synchrotron SIS-18 will be up-
graded to be used as a booster for further synchrotrons be-
ing part of the FAIR project underway at GSI. Recently, a
method was developed to measure the machine acceptance
of SIS-18 using transverse rf noise. This method is based
on the transverse expansion of the beam with noise beyond
the limiting aperture generating beam loss. The acceptance
was determined from the comparison of the resulting mea-
sured time evolution of the beam current with that obtained
from a numerical simulation. It would be desirable to ex-
tend this method in order to determine the dynamic aper-
ture. We present in this paper as the first step a numerical
study on the time evolution of the beam current affected by
the dynamic aperture generated with sextupoles.

INTRODUCTION

In this work we present a numerical study on the time
evolution of the beam current in the present GSI heavy
ion synchrotron SIS-18 affected by noise driven beam loss.
The study is the first step to determine the dynamic aper-
ture of SIS-18 which is limited due to the influence of
non-linear elements in the lattice. The method to deter-
mine the machine acceptance of a circular accelerator from
noise driven beam loss was recently developed and applied
to measure the vertical acceptance of SIS-18 [1]. Gen-
erally, the necessity to measure the transverse acceptance
arises from possible deviations of the real acceptance from
the design acceptance due to closed orbit distortions. The
opportunity to measure the transverse acceptance will also
be important for the future synchrotron SIS-100 because
its horizontal aperture will be only about 5σ of the beam
width. Further restrictions to the acceptance arise from sev-
eral septa installed for injection and slow extraction of the
beam. Therefore, a small reduction of the aperture can lead
to significantly increased beam loss, in particular during
injection.

The aim of our study is to compare the time evolution
of the beam current determined by the dynamic aperture to
that given by a physical aperture of the same size. Here,
we restrict ourselves to the dynamic aperture caused by the
3rd order resonance given by 13 = 3νx so that the dynamic
aperture appears in the two dimensions of the horizontal
phase space plane. In order to change the size of the dy-
namic aperture, different horizontal tunes close to the reso-
nance tune νx,res = 13/3 are used.
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MODEL AND PARAMETERS

Table 1: Main simulation parameters
Variable Size
Circumference of SIS-18, C 216.72 m
Horizontal tunes, νx 4.27, ... , 4.32
Vertical tune, νy 3.23
Ion Ta61+

Kinetic energy 100 MeV/u
RMS momentum spread, σp 5 × 10−4

Chromaticities, ξx, ξy −1.3,−1.5
Revolution time, T0 1.683 μs
Simulation time interval, tfin up to 30 s
Exciter voltage amplitude, Ua 250 V
Number of test particles N0 2000

To compute the time evolution of the particle number in
the beam we performed particle tracking simulations using
the MAD-X code [2]. The main simulation parameters are
presented in Table 1. To simulate horizontal particle diffu-
sion, we defined a horizontal kicker element in the lattice
to excite the beam. The momentum kick corresponds to the
electrostatic voltage of an exciter implemented in the real
machine. The voltage has the time behaviour [3]

U(t) = Ua sin [2πfCt + φ(t)] (1)

with the voltage amplitude Ua = 250 V and the carrier
frequency fC = νx,frac/T0 of the signal. The phase φ(t) is
determined by a pseudorandom bit sequence, where φ = π
for the bit status 1 and φ = 0 otherwise. This leads to the
noise power spectrum

P (f) ∝ sin2 [π(f − fC)/fS ]
[(f − fC)/fS ]2

. (2)

The width of the central peak of the spectrum, fS , is the
bit rate. fS has to be large enough to cover the spread in
the particle tunes arising from momentum spread and am-
plitude dependence of the betatron motion in a lattice with
sextupoles. In our simulations, fS = 0.05/T0 was used.

To generate a horizontal dynamic aperture we applied
six sextupoles equidistantly distributed in the lattice. Their
total focussing strengths are shown in Table 2. The sex-
tupoles excite a third order resonance and, hence, cause the
formation of a triangular phase space region of stable par-
ticle motion. Its size depends on the difference between
resonance tune and machine tune. Fig. 1 shows the stable
phase space regions for the smallest and largest tunes used
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Table 2: Focussing strengths of the sextupoles
Name of Focussing strength
Sextupole k2L (m−2)
S01KS1C 0.07071
S03KS1C 0.10833
S05KS1C 0.03762
S07KS1C -0.07071
S09KS1C -0.10833
S11KS1C -0.03762
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Figure 1: Stable phase areas for δ = −σp, 0, +σp with
σp = 5×10−4 from Table 1 at νx = 4.27 (graph above) and
νx = 4.32 (graph below). Note the different axis scales.

in this study. Realistic values used for slow extraction from
the real machine are above 4.31. In Fig. 1, also the change
of the triangular stable phase space area due to a relative
momentum deviation δ = Δp/p = ±5× 10−4 resulting in
the tune shift Δνx = ξxδνx are shown.

The dynamic aperture yields a nonlinear horizontal ac-
ceptance which is related to the stable phase space area by

εlim =
area
π

. (3)

The nonlinear acceptances for all horizontal tunes consid-
ered are presented in Table 3, where the areas of the stable
phase space regions were determined from the corners of
the triangles assuming that the edges are straight lines.

Table 3: Acceptances εlim for δ = 0 determined from the
area of the stable phase space regions. εlim for νx = 4.27
and νx = 4.32 correspond to the red graphs in Fig. 1.

νx εlim(mm mrad)
4.27 1540
4.28 1144
4.29 799
4.30 499
4.31 263
4.32 98

RESULTS

Beam Loss with a Linear Lattice

In a linear lattice, horizontal noise drives diffusion lead-
ing to a growth of the averaged or beam emittance linear in
time [1, 4]. When the beam width starts to exceed the ma-
chine acceptance εlim, beam loss will start leading to a re-
duction of the beam current. It can be shown that an asymp-
totic beam profile will be reached which is independent of
its initial shape. The resulting number of remaining parti-
cles approaches an exponentially decreasing behaviour,

N(t) ∝ e−
t

τloss , (4)

where the loss rate is

τ−1
loss ∝ βxσ2

Δx′

εlimT0
, (5)

where σΔx′ and T0 are the rms size of the momentum kicks
of the noise and the revolution time T0.

To compute the time evolution of the particle number
N(t) with the linear SIS-18 lattice we implemented a ma-
chine acceptance according to the tune from Table 3. In
doing so, the results are comparable to those obtained with
sextupoles which will be presented in the next subsection.
Fig. 2 shows N(t) due to a physical aperture and a dy-
namic aperture, respectively, for νx = 4.27 and νx = 4.32.
According to equation (4) the loss times are given by

τloss = (t2 − t1)
[
ln

N(t1)
N(t2)

]−1

. (6)

Here, we chose t1, t2, so that N(t1)/N0 = 0.3 and
N(t1)/N0 = 0.7. According to equation (5) the loss times
should fulfill the condition τloss/εlim = const because all
parameters except εlim were kept constant. We found that
fulfilled in good approximation, see the black curve in the
graph above of Fig. 3. There, at least, one does not find a
tendency for tunes close or far from the resonance tune.

Beam Loss with Sextupoles

The insertion of sextupoles in the lattice yields a depen-
dence of the particle tune on the betatron amplitude. The
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Figure 2: N(t)/N0 for νx = 4.27 (graph above) and νx =
4.32 (graph below) where the corresponding acceptances
εlim from Table 3 were used.

4.27 4.28 4.29 4.3 4.31 4.32
νx

0

2000

4000

6000

8000

10000

12000

τ lo
ss

/ε
lim

 (
s/

m
ra

d)

phys. aperture

dyn. aperture, σp=5 x 10
-4

dyn. aperture, σp=1 x 10
-4

4.27 4.28 4.29 4.3 4.31 4.32
νx

0

0.5

1

1.5

2

ε lim
(τ

lo
ss

)/
ε lim

,r
ea

l

Figure 3: Loss times τloss normalised to the acceptance
εlim for physical and dynamic aperture (graph above) and
dynamic aperture calculated from the loss times according
to Eq. (5) (graph below).

tune varies from the machine tune νx in the beam centre to
the resonance tune νx,res = 4.33333 at the corners of the
stable phase space region, which are unstable fixed points
of the horizontal betatron motion. On the other hand, the
carrier frequency of the noise fC was adjusted to the frac-
tional machine tune. Therefore, particles with a tune close
to the resonance tune are less excited by the noise when
the difference between machine tune and resonance tune
approaches or even exceeds the width of the noise power
spectrum fS · T0 = 0.05. The reduced excitation causes
slower beam loss which one can see in Fig. 2. The loss
times normalised to the acceptance, τloss/εlim, start to de-
viate strongly from the almost constant value obtained with
the linear lattice and the physical aperture when the dif-
ference between resonance tune and machine tune exceeds
about 2·fS ·T0/3, see graph above of Fig. 3. Consequently,
the assumption that, according to Eq. (5), a physical and a
dynamic aperture have the same size if the beam currents
decrease with the same loss time, would lead to an overes-
timate of the dynamic aperture. The relative deviation from
the values given in Table 3 would be approximately given
by the factor τloss,dynap/τloss,physap which one can see by
comparing both graphs in Fig. 3.

For small deviations of the machine tune from the reso-
nance tune, i.e. when νx > 4.3, Fig. 3 shows that the loss
times are not dominated by the nonuniform power density.
Instead, there is a strong dependence of the dynamic aper-
ture on the particle momenta, which is shown in Fig. 1. To
study the influence of the dependence of the dynamic aper-
ture on the momentum spread, we performed tracking cal-
culations with reduced momentum spread represented by
the green curve in Fig. 3. Obviously, the influence of the
momentum spread is small and the loss times are slightly
below those obtained with the linear lattice for both values
of the rms momentum spread. Possibly, this slight reduc-
tion of the loss time is a consequence of enhanced diffusion
arising from the influence of the sextupoles. However, our
simulations suggest that the particle loss determined by a
dynamic aperture is similar to that determined with the lin-
ear lattice and a physical aperture of the same size, if the
machine tune is sufficiently close to the resonance tune.
This can be fulfilled in SIS-18. Therefore, the measure-
ment of the dynamic aperture from noise driven beam loss
should be as possible as the measurement of the machine
acceptance.
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