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Abstract 
The motion and its stab ility of an electron in th e 

periodic cusped magnetic fields have been analyzed 
theoretically and calculated numerically, as th e stability 
could not be well predicted by the Mathieu’s Equation to 
guide the design of the magnetic focusing system for the 
propagation of the sheet electron be ams in the  
waveguides. The precise solution to the motion equations 
of the electron has been obtained by iteration. To validate 
the analytical solution and to evaluate the stability of the 
motion, numerical calculations have been carried out. And 
the results show that the analytical solution is reliab le, 
and there is only one stable region in the ሺ݌଴,  ,଴ሻ  spaceܤ
where the parameter ݌଴  is the period of the magnetic 
fields, and ܤ଴  is the magnitude of t he magnetic fields. 
Besides, the stability of the electron motion would 
become weaker wh ile the initial distance between the 
electron and the axis becomes larger. These results are  
interesting to the area of the s heet-electron-beam 
microwave sources focused by the periodical cusped 
magnetic fields. 

INTRODUCTION 
Sheet electron beam s for mi crowave generators have 

been of academic interest fo r several years for its 
potential carrying the larger current with the larger width 
[1-4]. As important issues, the motion and its stability of 
an electron in the periodic cusped magnetic (PCM) fields 
have been investigated theoretically and numerically in 
the past, and useful results have been obtained [1], [4]. 
However, most of t he results are a pproximate, and is 
difficult to be used to gu ide the design of the magnetic 
focusing system for the propagation of the sheet electron 
beams in the waveguides. 

To achieve the exact analy tical solution to the motion 
equation of electron in the PCM field s, the iteration 
method is proposed here. Just after th e first iteration, the 
analytical results become almost the same with  the 
numerical results, sh owing that the electron in the PCM  
fields oscillate at two frequencies at the same velocity in 
the horizontal plane, different with that in the wiggler 
magnetic fields. C onsequently, the coupling between the 
motions in the two transverse directions in the PCM fields 
is weaker than that in the wiggler fields. It is th e real 
reason for that the motion of electron in the PCM fields is 
stable than that in the wiggler fields. 

With numerical calculations, the stable region of the 

motion of electron in the PCM fields in the ሺ݌଴,  ଴ሻ spaceܤ
has been obtained and shows that there is only one stabl e 
region which is no larger than the first stable region 
predicted by the Mathieu’ Equation, where the parameter ݌଴ is the period of t he magnetic fields, and ܤ଴ is the 
magnitude of the magnetic fields. Besides, the stable 
region becomes smaller while the initial vertical distance 
between the electron and the axis are increasing. 

THEORETICAL ANALYSIS 
It was generally considered  that the electron starting [1]

from the initial point ሺݔ଴, ,଴ݕ ଴ሻݖ  in the “semi-infinite” 
PCM fields, 
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with the initial velocity  ൫ݒ௫଴, ,௬଴ݒ  ௭଴൯ and relativisticݒ
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in the horizontal (x) direction, and oscillate at th e 
velocity of  

   zkyvkv zy cos00,                  (4) 

in the orbit of the betatron motion, 

   zkyy sin0                       (5) 

in the vertical (y) d irection, where “semi-infinite” meant 
infinitely wide in the x direction and infinitely long in 
axial (z) with finite dimensions in the y direction, the 
parameters ݇଴ = ߨ2 ⁄଴݌ , ݇ఉ = ଴ܤ݁ ⁄௭଴ݒ௘݉ߛ2√ , ఉ଴ݕ =ටݕ଴ଶ + ௬଴ଶݒ ݇ఉଶݒ௭଴ଶൗ  and ߠ = ଴ݕ൫݊݅ݏܿݎܽ ⁄ఉ଴ݕ ൯ were the 

wave number of the PCM fields, the wave number, the 
spatial amplitude and the initial phase of th e betatron 
motion, respectively. To obtain Eqs. (3), (4), and (5), the 
paraxial approximations ݇଴ݕ ≪ 1 and ݖ ≈ ݐ௭଴ݒ , and th e 
relations ݇ఉ ≪ ݇଴ had been assumed. 

In the same way, the velocity components of electron in 
the wiggler fields with the same parameters could be 
written in the following forms, 
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   zkyvkv zy cos00,                  (7) 

It would be concluded from Eq. (3)-(7) that the 
electrons in the both periodic magnetic fields should 
wiggle at the sam e frequency but at the different 
velocities. And consequently, the motion of the electron in 
the PCM fields should be more stable than that i n the 
wiggler fields, for coshሺ݇଴ݕሻ > sinℎሺ݇଴ݕሻ  ,while ݇଴ݕ ≪ 1, according to the paraxial approximation [1]. 

However, the betatron motion is going to be coupled to 
the wiggling motion more intensively for the electron in 
the PCM fields th an that in the wiggler fields, leading to 
different wiggling motions of the two electrons. To obtain 
relatively accurate expressi ons of the horizontal motion, 
Eq. (5) should be substituted into Eq. (3), then one can 
get, 

    0000, sinsin2 xzPCMx vzkzkyvkv     (8) 

With the similar iteration, the wi ggling motion of the 
electron in wiggler fields can be written as, 
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Equations (8) and (9) imply that the wiggling motion of 
the electron in the PCM fields will main ly contain 
velocity components at two frequencies ଵ݂,ଶ = ௪݂ ± ఉ݂ 
with the same amplitude, while the wiggling motion of 
the electron in  wiggler fields will be almost 
monochromatic, at frequency	 ௪݂, with the amplitude twice 
as large as that in the PCM fields, where ௪݂ = ݇଴ ௭଴ݒ ⁄ߨ2  
and ఉ݂ = ݇ఉ ௭଴ݒ ⁄ߨ2 . It is  the real reason for that the 
motion of electron in the PCM fields is stabler than that in 
the wiggler fields. 

To achieve more exact solutions, the iteration should be 
continued. 

NUMERICAL CALCULATIONS 

The Motion of an Electron  
To validate the analytical re sults above, the numerical 

calculations have been performed. As an example, the 
motion of electron s initiating at th e point ሺݔ଴, ,଴ݕ ଴ሻݖ =ሺ0,0.05݌଴, 0ሻ  with the velocity ൫ݒ௫଴, ,௬଴ݒ ௭଴൯ݒ =ሺ0, 0, 0.776ܿሻ  in the two periodic magnetic fields with 
the same amplitude ܤ଴ = 0.2ܶ and period ݌଴ = 2cm has 
been calculated, respectively, where ௭଴ݒ = 	0.776ܿ  
corresponds to an  energy of 300 keV，ݕ଴ =  ଴ is a݌0.05
typical value of the initial vertical displacement from the 
xoz plane. In this situation, ݇ఉ ݇଴ ≈ 0.2⁄  and ݇଴ݕ଴ ≈0.314, hence the conditions ݇ఉ ≪ ݇଴ and  ݇௪ݕ଴ ≪ 1 used 
to obtain Eqs. (3) - (9) could be basically satisfied. 

Figure 1:  Normalized transverse velocities ݒ௫,௉஼ெ ⁄௭଴ݒ  
and ݒ௫,ௐூீீ ⁄௭଴ݒ  versus axial position ݖ ⁄଴݌  for the 
case ܤ଴ = 0.2ܶ and ଴݌ = 2ܿ݉.  

 

Figure 2: FFT of the curves of the transverse velocities ݒ௫,௉஼ெ ⁄௭଴ݒ   and ݒ௫,ௐூீீ ⁄௭଴ݒ  for the case ܤ଴ = 0.2ܶ 
and ଴݌ = 2ܿ݉. 

 
Figure 1 illustrates th e  evolution of the horizontal 

velocities of the electron s in the PCM and wiggler fields, 
using solid and dashed lines, resp ectively. It is obv ious 
that the electron in the wiggler fields oscillates at a higher 
speed than that in the PCM fields. In addition, the curve 
of ݒ௫,ௐூீீ  looks like a m onochromatic sinusoid while 
another curve looks like multi-frequency sinusoid. The 
Fast Fourier Transforms (FFT) of the c urves of ݒ௫,௉஼ெ 
and ݒ௫,ௐூீீ in Fig. 1 are performed and plotted in Fig. 2. 
In this figure, one can find out that the n umerically 
calculated wiggling frequency ݂′௪,ௐூீீ ௪݂⁄ ≈ 0.98 of ݒ௫,ௐூீீ  is slightly less th an the predicted value of 1.00. 
This is cau sed by the slight drop of the axial velocity 
component ݒ௭,ௐூீீ due to the transverse motion, and the 
wiggling frequency should be written in the form ௪݂ ≈ ݇଴ 〈௭,ௐூீீݒ〉 ⁄ߨ2  to be more exact, where	〈ݒ௭,ௐூீீ〉  
is the periodical average of ݒ௭,ௐூீீ, and in the numerical 
calculation, 〈ݒ௭,ௐூீீ〉 ௭଴ݒ ≈ 0.98⁄ , which is consisten t 
with the slightly drop of the wiggling frequency. 

Proceedings of IPAC2011, San Sebastián, Spain WEPC071

05 Beam Dynamics and Electromagnetic Fields

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order 2185 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)



However, the wiggling frequency of the electrons in th e 
horizontal direction in the PCM fields ݂′௪,௉஼ெ = ሺ݂′ଵ + ݂′ଶሻ 2⁄ ≈ ௪݂  since the calculated 〈ݒ௭,௉஼ெ〉 ௭଴ݒ ≈ 1.00⁄ , implying that the transverse motion 
of the electrons in the PCM fields provides much smaller 
perturbation to the axial velocity than that in the wiggler 
fields. In add ition, the numerically calculated betatron 
frequency ݂′ఉ,௉஼ெ = ሺ݂′ଵ − ݂′ଶሻ 2⁄ ≈ ఉ݂.  

In conclusion, the analysis in the previous section 2 has 
been validated by the numerical calculations under the  
conditions ݇ఉ ≪ ݇଴  and ݇଴ݕ଴ ≪ 1.  

The Stability Criteria for the Motion of an 
Electron  

To evaluate the stab ility criteria for t he motion of an 
electron in the periodic magnetic fields, the Mathieu’s 
Equation [4], [5] based on the paraxial approximation was 
widely used [3], [4]. According to the Equation, the 
motion of electrons would be stable in the discrete regions ߙ < 0.66, 1. 75 < ߙ <3.70, and so on, where ߙ = ݇ఉଶ ݇଴ଶ⁄   
was a factor in th e Equation. However, when the 
instability grows up, the paraxial approximation becomes 
inapplicable. And consequently, the Mathieu’s Equation 
and the stability evaluation may become unbelievable. So 
it is n ecessary to p erform numerical calculations to 
evaluate reliability of the discrete regions predicted by the 
Mathieu’s Equation. 

  The stable regions predicted by the numerical 
calculations as well as th e Mathieu’s Equation in th e ሺ݌଴, ଴ሻ  space are plotted in Fig. 3. In tܤ he calculations, 
the parameters of the electron, except the initial vertical 
location 0y , are almost the same as those in t he previous 
section. It is obvious that there is only one stable region 
located in and b eing smaller than the first stable region 
predicted by the Mathieu’ Equation, wherever the electron 
initiates from. Besides, the stable region becomes smaller 
while the initial vertical distance between the electron and 
the axis are increasing. 

 

 
 
Figure 3: The stable regions predicted by the 
Mathieu’s Equation and the numerical calculations. 

CONCLUSIONS 
The motion and its stability of an electron in the PCM 

fields have been analyzed theoretically and calculated 
numerically, as the stability could not be well predicted by 
the Mathieu’s equation to guide the design of the 
magnetic focusing system for the propagation of the sheet 
electron beams in the waveguides. The precise solution to 
the motion equations of the electron has been obtained by 
iteration. To validate the analytical solution and to 
evaluate the stability of th e motion, numerical 
calculations have been carried out. And the results show 
that the analytical solution is reliab le, and th ere is only 
one stable region in the ሺ݌଴, ଴ሻܤ  space. Besides, the 
stability of the electron motion would become weaker 
while the initial distance between the electron and the axis 
becomes larger. These results are interesting to the area of 
the sheet-electron-beam microwave sources focused by 
the PCM fields. 
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