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Abstract

Efficient and accurate space-charge computations are es-
sential for the design of high-brightness charged particle
sources. Recently a new adaptive meshing strategy based
on multigrid was implemented in GPT and the capabilities
were demonstrated. This new meshing scheme uses the
solution of an intermediate step in the multigrid algorithm
itself to define optimal mesh line positions. In this paper
we discuss further developments of this adaptive meshing
strategy. We compare the new algorithm with the meshing
scheme of GPT where the mesh line positions are based
upon the projected charge density.

INTRODUCTION

The design of charged particle accelerators and beam-
lines heavily relies on numerical simulations. When non-
linear space-charge effects, path-length differences and
non-linear optics are significant, the favorite design method
is solving the relativistic equations of motion of a large
number of sample (macro) particles through the electro-
magnetic fields of the set-up. A major complication is that
for high-brightness beams also mutual Coulomb interac-
tions, known as space charge forces, need to be taken into
account.

The particle-mesh method is applied for space charge
computations if stochastic effects are negligible. For the
efficiency of the method the construction of the mesh is
essential. Both a good approximation to the particle distri-
bution and the performance of the solver is determined by
the mesh. In [6] the authors investigate an adaptive mesh-
ing strategy based on multigrid. The advantage of this ap-
proach is that the results of multigrid algorithm can be used
for the refinement of a given mesh. In our previous work
we showed the potential of the algorithm, whereas in this
paper we focus on reliability and predictable performance
over a wide parameter range.

In this paper we give a new approach for the successive
refinement of a mesh based on multigrid that is much more
stable. Furthermore another objective could be achieved:
More mesh lines near the head and tail of cigar-shaped
hard-edged bunches. Such bunches have extreme field gra-
dients close to the edges that cannot be detected by an al-
gorithm that is just based on the charge density. The new
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method detects these large fluctuations automatically and
puts more mesh lines at the desired locations.

PARTICLE-MESH MODEL IN GPT

In the tracking code GPT several space charge models
are implemented [4]. The 3D model we consider here is
based on the particle-mesh method (see [3] and citations
therein). Hereby the bunch is modelled as a certain distri-
bution of macro particles. All fields are computed in the
electrostatic approximation in the rest frame of the bunch,
implicitly assuming only a few percent energy spread.

After the transformation into the rest frame a mesh is
constructed and the charge of the particles is assigned to
the mesh points. Now, Poisson’s equation

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω
(1)

is solved for the potential ϕ. Further � denotes the space
charge distribution and ε0 the dielectric constant. The do-
main Ω is a rectangular box constructed around the bunch.
In GPT several boundary conditions are implemented, but
in this paper we have restricted the investigations to Dirich-
let boundaries, i. e. the surface ∂Ω is assumed to be per-
fectly conducting.

For the solution of the Poisson equation we applied a dis-
cretization with second order finite differences. This leads
to a linear system of equations of the form Lhuh = fh,
where uh denotes the vector of the unknown values of the
potential and fh the vector of the given space charge den-
sity at the grid points. The step size h indicates a certain
refinement level and the operator Lh is the discretization of
the Laplacian.

ADAPTIVE MESHING

The Adaptive GPT Mesh

The adaptive GPT mesh (first in release 2.7) is an adap-
tive discretization that allocates the mesh lines dynamically
due to the charge density in the bunch [4]. The number of
mesh lines is chosen according to the number and the distri-
bution of the particles, respectively. Efficient space charge
computations can be performed with the MOEVE Poisson
solver that has been constructed especially for such non-
equidistant meshes [1]. The adaptive GPT mesh is highly
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Figure 1: Relative error of the electric field (top) and CPU
time (bottom) for the current GPT mesh and the new adap-
tive meshing scheme.

reliable but the construction is very complex. For exam-
ple it has to be ensured that neighboring step sizes do not
differ more than a certain factor in order to ensure the con-
vergence of the multigrid Poisson solver [3].

The Self-Adaptive Multigrid Mesh

Recently, a self-adaptive discretization based on multi-
grid has been implemented in GPT. The main idea is to start
with a relatively coarse grid and to refine it step by step ac-
cording to a certain criterion, the so-called τ -criterion. The
τ -criterion and the extended τ -criterion together with the
Poisson solver of MOEVE were discussed in [2] and [6],
respectively. Then the mesh is refined if the τ -values ex-
ceed a certain value i. e. a mesh line is added if the max-
imum of τ -values in a plain in x-, y- and z-direction ex-
ceeds a certain value. Since the particle distribution is not
smooth this approach provides in certain cases a mesh line
distribution that does not sufficiently approximate the dis-
tribution of the particles. Such as very long bunches posed
a problem.

In this paper we investigate a new approach for a better
exploitation of the τ -values. Instead of the maximum value
we choose the �2-norm. This approach gives a better aver-
age over the particle distribution in a certain plane. Thus,
the weight of local spikes is much lower.

In order to describe our method in more detail we have to

introduce some notations according to [5], where the adap-
tive multigrid method with the τ -criterion is described. The
step sizes h and 2h refer to the step sizes on the fine and
the next coarser grid (usually with double mesh size), re-
spectively. The operators I 2h

h and ̂I2h
h denote different re-

striction operators. In our implementation the injection was
chosen for ̂I2h

h and the full weighting restriction for I 2h
h .

The τ -criterion is based on the so-called (h,2h) relative
truncation error τ 2h

h with respect to the restriction operators
I2h
h and ̂I2h

h . It is defined by τ 2h
h := L2h

̂I2h
h uh−I2h

h Lhuh .
More details can be found in [5].

The values τ 2h
h (i, j, k) are now available at the mesh

points (i, j, k) with i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1
and k = 0, . . . , Nz − 1, where Nx, Ny and Nz are
the numbers of mesh lines in x-, y- and z-direction, re-
spectively. For the extended τ -criterion [6] we introduce
the differences of the values τ 2h

h for neighboring mesh
points Dτ2h

h = (Dxτ2h
h , Dyτ2h

h , Dzτ
2h
h ). Here, Dxτ2h

h =
τ2h
h (i + 1, j, k) − τ2h

h (i, j, k) with i = 0, . . . , Nx − 2 de-
notes the differences in x-direction, Dy and Dz are defined
analogously.

For the new τ -criterion we have taken the �2-norm of
the τ -values in each plane in x-, y- and z-direction, respec-
tively, i. e.

‖τ2h
h (x(i))‖2

2 =
∑

j,k

(τ2h
h (i, j, k))2, i = 0, . . . , Nx − 1

(2)
and the �2-norm of the differences

‖Dxτ2h
h (i)‖2

2 =
∑

j,k

(Dτ2h
h (i, j, k))2, i = 0, . . . , Nx − 2.

(3)
The new self-adaptive multigrid scheme is given as fol-
lows:

Algorithm: Self-Adaptive Multigrid

1. Start on a relatively coarse mesh.

2. Perform a few multigrid cycles on Lhuh = fh.

3. Compute τ 2h
h and Dτ2h

h .

4. Add a mesh line locally in x-direction between point
xi and xi+1, if

0.5(‖τ2h
h (x(i))‖2 + ‖τ2h

h (x(i + 1))‖2)
+ δ‖Dxτ2h

h (i)‖2 > ε.
Analogously, add mesh lines locally in y- and z-
direction

5. Proceed from 2. as long as Nx ·Ny ·Nz is smaller than
α times the number of particles (α >= 1).

Main advantages of this approach are that the generated
hierarchy of meshes now matches the hierarchy of meshes
of multigrid and the values τ 2h

h are provided directly by the
multigrid algorithm.
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The term in step 4. of the algorithm computes an aver-
age of the norm of τ -values and of the norm of the differ-
ence of τ -values. Whereas the term 0.5(‖τ 2h

h (x(i))‖2 +
‖τ2h

h (x(i + 1))‖2) is an indicator for the particle distribu-
tion, the term δ‖Dxτ2h

h (i)‖2 detects the sharp edges. We
take this second term with weight 0 < δ < 1 that the influ-
ence of the edges are not overestimated. Our simulations
were performed with δ = 0.2.

RESULTS
One of the most stringent tests in our suite of analytical

benchmarks is the field-error of a hard-edged cylinder with
an aspect ratio varying over 6 orders of magnitude. Typical
rms errors are in the 10% range, as the field is almost sin-
gular near the end of bunches with extreme aspect ratios.
Nevertheless we want the code to survive these cases, with
controlled behavior regardless of the number of mesh lines
and particles.

The results for this analytical test case is shown in Fig-
ure 1. It turns out that for every type of aspect ratio a set
of parameters can be found that the relative error as well
as the CPU time are comparable to the GPT meshing rou-
tine. Unfortunately, this is not the same set of parameters
for all bunches. For low aspect ratios (10−1 to 101) we
can achieve performing times that are up to a factor 2 faster
than the routine of GPT. For longer or shorter bunches we
have to spend more mesh lines in order to provide a certain
accuracy, i. e. the factor α has to be chosen higher (α = 4).
The very long bunches with aspect ratio smaller than 10−2

require an even finer discretization (α = 10).
Figure 2 represents the longitudinal field of a long bunch

with aspect ratio 10−2.5 obtained with the GPT meshing
routine and with the adaptive multigrid mesh, respectively.
It can be observed that with the new meshing procedure the
field at the edges is much better approximated due to edge
detection of the algorithm.

CONCLUSION
In this paper we introduced a new adaptive meshing

strategy based on multigrid. The main idea is to make use
of quantities that are already provided by the multigrid al-
gorithm - the τ -values, that give an estimation of the error.
In our new approach we combine the �2-norm of τ -values
with the �2-norm of the differences. This approach allows
a refinement of the mesh due to the distribution of the par-
ticles as well as a refinement at edges of the distribution.
The numerical investigations proof the potential of the new
algorithm.
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Figure 2: Longitudinal field of a long bunch with aspect
ratio 10−2.5 obtained with the GPT mesh (top) and with
the adaptive multigrid mesh (bottom).
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