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Abstract 

In this paper we use a swarm intelligence algorithm, 
Particle Swarm Optimization (PSO), to optimize the 
emittance directly. Some constraint conditions such as 
beta functions, fractional tunes and dispersion function, 
are considered in the emittance optimization. We 
optimize the strengths of quadrupoles to search for low 
emittances. Here an FBA lattice studied in the design of 
the Hefei Advanced Light Source storage ring is used as 
the test lattice. The PSO is shown to be beneficial in the 
optimization. 

INTRODUCTION
Today more low-emittance synchrotron light sources 

are in early operation, construction or design around the 
world, such as SSRF and NSLS-II, to satisfy the 
requirements of synchrotron radiation science. The 
synchrotron radiation users prefer high-brightness light 
sources with low emittance. So some existing light 
sources also have their upgrade plans to reduce the 
emittance. A major upgrade to the Hefei Light Source at 
our laboratory is underway to achieve lower emittance.  

For lattice designers, the traditional method used to 
find the desired lattice with low emittance and satisfying 
lattice functions is not straightforward, and the solutions 
are usually based on their experiences. And, the method 
does not guarantee that the obtained solution is best. 
Presently, some direct methods have been used for lattice 
design. The scanning method [1] is very simple and easy 
to implement, but it is very time-consuming. When there 
are only several variables, one can use this method to 
search for optimal solutions. But for more variables, one 
has to consider the computer resources. Artificial 
Intelligence (AI) algorithms can well solve this problem.  

At present, Genetic Algorithms (GAs) [2] have been 
successfully applied to linear optics optimization for some 
light sources, as well as nonlinear optimization. In 
addition, Particle Swarm Optimization (PSO), a swarm 
intelligence algorithm, is also an alternative for global 
optimization. We first used the PSO algorithm [3, 4] to 
optimize sextupoles for enlarging dynamic aperture and 
momentum aperture, and it was successful. Then naturally 
we applied it to linear optics optimization. In this paper, 
we will present our preliminary work on the linear optics 
optimization using PSO.  

PARTICLE SWARM OPTIMIZATION 
ALGORITHM 

Particle Swarm Optimization is an Artificial 
Intelligence algorithm proposed by James Kennedy and R. 
C. Eberhart in 1995 [5], motivated by the social behavior 
of organisms such as bird flocking. The PSO algorithm is 
easy to understand and implement, has only a few 
parameters to adjust, and converges very fast. So it has 
been developing very quickly, and has been successfully 
applied to solve a wide variety of problems in different 
domains.  

In PSO, each potential solution is called “particle”. 
Each particle has its position and velocity, and has a 
simple memory which stores its personal best solution so 
far. Each particle updates its velocity and position 
according to its own experience, and the experience of 
neighboring particles. The basic equations of motion for 
particles are described as follows:  
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where xid, vid, and pid are respectively the position, 
velocity and best position so far of the ith particle in the dth

dimension, pgd is the global best position so far of the 
entire swarm in the dth dimension, w is the inertia weight, 
c1 is the cognitive learning factor, c2 is the social learning 
factor, and r1 and r2 are two uniformly distributed random 
variables in the range [0, 1]. This is the global version of 
PSO, where the neighborhood of each particle is the 
entire swarm. In the local version of PSO, the 
neighborhood is a subset of the swarm.  

Parameter selection is very important for the 
performance of PSO. We adopt the PSO with constriction 
factor introduced by Clerc. The velocity update can be 
expressed as follows: 
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Here  is the constriction factor. The recommended 
parameter values for the above equations are: =4.1 
(c1=c2=2.05), =0.729. Thus, the values of the parameters 
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in Equation 1 are obtained: w=0.729, c1= 
c2=0.729×2.05=1.49445.   

The objective function is called fitness function in the 
PSO algorithm, and its value is called fitness value. The 
PSO algorithm minimizes the fitness value. The steps of 
the PSO algorithm are as follows:  
(1) Initialize a population of particles with random 
positions and velocities on D dimensions in the problem 
space.
(2) For each particle, evaluate the fitness function. 
(3) For each particle, compare its current fitness value 
with the fitness value of its previous best position. If its 
current fitness value is lower than its previous best fitness 
value, then update its previous best position and 
corresponding fitness value with its current position and 
fitness value.  
(4) Determine the current best particle of the swarm with 
the lowest fitness value. If the fitness value is lower than 
the fitness value of the global best position, then update 
the global best position and corresponding fitness value 
with the best particle’s position and fitness value.  
(5) Update the velocity and position of each particle 
according to Equation 1. 
(6) Loop to (2) and repeat until a criterion is met, usually 
a sufficiently good fitness value or a maximum number of 
iterations.  

Note that all positions should not be beyond the 
problem space, and that all velocities should not be 
beyond the maximum velocity limit.   

EMITTANCE OPTIMIZATION 
In the lattice design, we want to find the lattice not only 

having low emittance but also having satisfying lattice 
functions. In our optimization, the emittance is the 
objective function, and the lattice functions are treated as 
constraints. So it is a constrained optimization problem.  

The general form of an optimization problem with 
constraints can be expressed as follows:  
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Here, f(x) is the objective function to be optimized, gj(x)
and hk(x) are respectively the inequality and equality 
constraints imposed on the design, and x is the set of 
decision variables with lower and upper bounds of ximin
and ximax.

Presently, in our emittance optimization, the decision 
variables are quadrupole strengths, and the constraints are 
beta functions, fractional tunes and dispersion function. 
For examples, if we want the horizontal and vertical beta 
functions ( x, y) to be in the ranges [a, b] and [c, d], 
respectively, there are four inequality constraints:  

.0,0,0,0 dcba yyxx       (5) 

And, if we want ( x, y) to be e and f, respectively, 
there are two equality constraints:  

.0,0 fe yx                                                    (6) 

The key point in the process of solving constrained 
optimization problems is to deal with the constraints. 
Here our method is based on the method of double fitness 
values [6, 7], which has been used to optimize the 
dynamic aperture in our previous nonlinear optimization.  

In the method of double fitness values, the constraint 
violations are treated as a fitness function. And, the 
objective function is the major fitness function. Thus, 
using this method, every particle has two fitness values in 
the PSO algorithm. The two fitness values of the ith

particle are described as:  
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Here, Fo(i) is the value of the objective function; Fv(i) is 
the weighted sum of constraint violations, described by 
the maximum value of 0 and gj(xi), and the absolute value 
of hk(xi); aj and bk are weight factors.   

Some infeasible solutions with small constraint 
violations are possibly more preferable than feasible 
solutions. Thus, allowing some infeasible solutions is 
helpful for searching for optimal solutions. So, a constant 
>0 is introduced, and the criteria for comparison are as 

follows:  
(1) if the values of Fv(i) and Fv(j) corresponding to 

particle i and particle j, respectively, are both less 
than or equal to , the particle having lower value of 
Fo is better;  

(2) if Fv(i) and Fv(j) are both greater than , the particle 
having lower value of Fv is better;  

(3) if Fv of particle i or j is greater than , and Fv of 
particle j or i is less than or equal to , the particle 
having lower value of Fv is better.  

Note that the PSO algorithm minimizes Fo and Fv.
Based on the above criteria, in our emittance 

optimization, for particle i, if it does not have a stable 
solution, a large constant (for example, 10000 (unit: nm
rad)) is assigned to Fo(i), and another constant is assigned 
to Fv(i). If it has a stable solution, but Fv(i) is greater than 
, a moderate constant (for example, 100 (unit: nm rad)) 

is assigned to Fo(i). If it has a stable solution, and Fv(i) is 
less than or equal to , Fo(i) is obtained according to the 
formula for calculating the emittance.  

As an example of application, we optimize the 
emittance of an FBA lattice studied in the design of the 
storage ring of Hefei Advanced Light Source (HALS). 
The lattice has twenty super-periods, and we employ 
some combined-function (dipole-quadrupole) magnets. 
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In our optimization, there are eight variables of 
quadrupole strengths. The basic constraint conditions are:  
(1) maximum horizontal and vertical beta functions x,

y <30m, 
(2) horizontal beta function at center of straight 10m<    

x<15m,  
(3) vertical beta function at center of straight y <5m, 
(4) fractional tunes <0.5,  
(5) maximum dispersion <0.1m, 
(6) non-dispersive straight.  

We used the PSO algorithm with a population size of 
10000 and 1000 iterations, to optimize the emittance. The 
minimum emittance that can be reached is 68pm rad, and 
the lattice functions of one period of one obtained 
solution are shown in Fig.1.  

Figure 1: Lattice functions of the non-dispersive lattice. 

At our laboratory, Genetic Algorithms are also applied 
to the emittance optimization [3]. We have found that, 
using the PSO algorithm we can get as good results as 
using GAs.  

CONCLUSIONS 
The PSO algorithm has been developing very quickly 

since it was proposed in 1995. We first used the PSO to 
optimize the dynamic aperture. Then we applied it to the 
emittance optimization, and as shown above, it is 
beneficial in the optimization. But the work presented 
here is only the preliminary work. We will improve the 
work in future.   
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