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COVARIANT FORMULATION OF THE VLASOV EQUATION

O.l. Drivotin, St.-Petersburg State University, St.Pgiberg, Russia

Abstract sition in the configuration space, and & position in the
- L . phase space. Assume that coordinates in the phase space
In traditional approach, the Vlasov equation is COI‘]SIdE) b ' : pha P
. : ! . : . can be chosen so that the first 3 coordinates coincide with
ered as integro-differential equation with nonlinear term . . ' .
. . . the coordinates in the configuration space, and that the rest
accounting for the electromagnetic interaction. That fors

S . S0 . 3 coordinates allow us to find the velocity vector in the con-
mulation includes partial derivatives on phase coordmate

) . : . figuration space:
According to the covariant approach, physical relatlonsg P

should be presented by tensor equations. The main feature d_z — V(220 gt g )
of the covariance is that any tensor equation can be written dt &HEL3,959 )

without using of coordinates. Though we use the reference frame, the proposed ap-

In covariant formulation of the Vlasov equation, we Usyrgach s fully covariant as we can consider instead of
such tensor objects as Lie derivatives. Classical and relé\'/stem of layers of simultaneous events every system of
tivistic cases are described similarly. A difference bewe ¢60th timelike surfaces filling the domai, introduce

these two cases appears only in form of particle motiofheir continuous parametrization and system of their map-

equations. _ _ _ping to some selected surface, and consider particle dynam-
Another feature of presented approach is consideratiggs in the tangent bundle of that surface.

of degenerate distributions in the phase space. By degener-

ate distribution we mean a distribution which have support PARTICLE DISTRIBUTION DENSITY

of dimension smaller than dimension of the phase space.

The simplest case of degenerate distribution is the distri- We shall consider various types of distributions, which

bution described by the Dirac measure. Another exanwill be described on the basis of the common approach:

ple is the Kapchinsky-Vladimirsky distribution, when par- In the simplest case, assume that we deal with contiriuos

ticles are distributed on the 3-dimensional surface in theharged media occupying a domdig in the phase space

4-dimensional phase space. instead of set of discrete particles. Consider a family.of
Presented results can be applied for description and sisubdomaing G}, G C Gy, with smooth boundaries fof

ulation of charge particle distributions for high-intemsi which their characteristic functions are defined:

beam. 1. qeG

xa(q) = {0’ 0¢G.

PHASE SPACE Let us call differential form of 6-th degree

Consider a domairD in 4-dimensional spacetime and
an observer which can measure time of each eveft in
t(z), 2 € D. ThenD can be represented as union of disye particle density distribution in the phase space (osgha
joint layers corresponding to various valueg of et’s call density) if for each subdomaifi
such layers the layers, or spaces, of simultaneous events.
In classical theory, each such Iayer_ls the same _for differ- /xc(q)n(q) — Ng. )
ent observers. Assume thi#ét) is continuous mapping and
the spaces of simultaneous events can be described as sur-
faces of clas§’; in some system of coordinates with slowlyHere N is the number of particles ig/, which in this
varying coordinates [1]. model may be not integer. For simplicity, assume that

Let us call an observer and a system of mapping of cofz 23456 (¢, q) is continuously differentiable. Cases of piece-
responding layers of simultaneous events to some select@ite continuous and piece-wise differentiable compor:ent
layer the reference frame. The selelected layer of simutan be considered analogously.
taneous space is called the configuration space associate@onsider the space of functiong(q) for which
with the reference frame [1]. Jo f(q)w(q) exists for any form of 6-th degree(q) from

When time passes, particles move from one layer afiven class. Let us call such functions integrable and-de-
simultaneous events to another, but we can examine dyete by7 their space. For some foranq), define a linear
namics of particle ensemble in 3-dimensional configuratiofunctional onF by the rule
space of some frame of reference.

Let us consider the 6-dimensional tangent bundle of the <w, f>= /f(q)w(q), ferF. 3)
configuration space as the phase space. Denaotesbyo- &o
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Then definition (2) can be written as self electromagnetic field, which is created by the media
being used as the model of a particle ensemble. For contin-
<n,x >= Ng. (4)  uous models (1), (7), we assume that particle density has

) ) o sufficiently small components to neglect the collision inte
Let us consider now the discrete model of point-like Pargra).
ticles. In the fr.am.es of this model each partlgle IS repre- he particle dynamics equations define vector field

sented by a point in the phase space. Let us introduce theihe domainD, of the phase space. If right hand sides
linear functionab(q) on 7 : of the dynamics equations are continuously differentiable
_ then there exist integral lines, unique for each point and

<oq).f>=[la), feF. ) each instance of time. Time can be taken as a parameter

As the measurgp =< 8(q),xp > is called the Dirac for integral lines. In the simple case, when the phase space

measure, let us call the functional (5) the density of th& associated with an inertial frame, the dynamics equation
Dirac measure. The space of such functionals is linedeke the form
their linear combination being da

- 8)

E - Y
< Zai5(CI(z‘))a f>= Zaif(%))-

3 3
d : _
mZgik(—*}/v)l =eb + eZBkiv’, k=1,2,3. (9)
For the model of point-like particles, let us call a linear ;=7 dt i=1

combination of functionals (5), such that for each subdq;|eree andm are charge and mass of a partielés reduced
main G the equality (4) holds, the phase density. Itis eas¥nergy (in nonrelativistic case— 1), g;4 are components

to seethatin this case = 1, andy;) are particle positions ¢ the'metric tensor. In nonrelativistic case, metric tenso
in the phase space,= 1, N whereN is the total number s gefined in the configuration space. In relativistic case,

of particles: N goo = 1, go; = 0,i = 1,2,3, so that components of co-
B Z 5 ©6) variant derivation of the velocity vector in left hand side o
nlg) = s 960 ) (9) contains Christoffel symbols only with spatial indices

) ) _ ) E is the first degree form of the electric field intensity and

In this case, the density (6) is described by a scalar fung; js the second degree form of the magnetic flux density.
tion, which is a differential form of degree. _ Let us consider Lie dragging,, s, along vector field

Consider also the model that can be regarded as intef: \hich maps each poin to point shifted along inte-
mediate case between the model on continuous media & line by parameter incremet It induces a coordinate
the model of point-like particles. Assume that particles artransform, which can be considered as shift of coordinate
continuously distributed on some oriented surféde the  system: for every poing we take as its coordinates coor-
domainGy. The Kapchinsky-Vladimirsky distribution and ginates of its preimage at Lie dragging [2]. Then Lie drag-
the Brillouin flow are examples of such distributions. Weying £, 5,7 of tensorT” can be defined as follows: com-
shall describe distribution density in this case by a djﬁerponenté off,, 5T in shifted coordinates are equal to cor-

depends on orientation of the surface, which is given by gie derivative of tensor field” along vector fields can be
set ofn — m vectors: a change of the orientation can regefined as

sult in change of the form component sign. Assume for LT — lim T —Fy 5T (10)
simplicity that form components are continuously differen YT st—0 ot ’
tiable functions of coordinates on the surface. if the limit exists.
A form of m-degreeo(q) defined on an-dimensional  For differential form ofp degree, which is covariant ten-
oriented surface set a functional gh: sor, the components of Lie derivatives are equal
<ola) s >= [ flaota). o ., ow
) (LwT)il...ip = a;k Lw™ 4+ 8qi1 'Tj i2...0p +...
In thi , call such f J
n this case, call such form gqql;p T (11)
= 7
n(a) = o(a), 0 Consider the equation for density distribution form. It is
that the condition (4) holds, the phase density. easy to see that dimension of the distribution supportes doe
not change, because dragged basis vectors can be use as
THE VLASOV EQUATION basis vector in dragged point. Assume that particles don’t

arise or destroy. Then integrating on each domain of the
According to Vlasov, assume that particle dynamics iphase space or surface where particles are located gives the
determined by an external electromagnetic field and by treame result as integration on dragged domain or surface. It
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means, in accordance with definition of Lie dragging, thathe phase density form to the current density form. For ex-
evolution of particle density form can be described as Liample, when the phase density is described by the expres-
dragging of the density form along vector field which is  sion (1), it can be shown that components of the current

defined by the dynamics equations: density are
n(t +6t, Fu, 5tq) = Fu,5in(t, q). 12 g s(ta) = / n123as6(t, q)dg* A dg® A dg®,
We shall call this equation covariant form of the Vlasov D(z)
equation. 3
How does density form change in the given point of the Jrat 22 (t, ) = / 123456 (1, q)didq4 Adg® A dgb,
phase space? In the case when distribution is described by dt

the form of 6 degree with continuously differentiable com-

onents or when degree of the density form less then 6,
P g 4 é]tacac (t,) /n123456tq_dq Adg® A dg°,

but the surface where particles are located does not chang dt

one can write equation with partial derivatives for the den- D(x)

sity form. Let phase density form is equal #dt, ¢) at dal

some instance in a pointgq. Then it will be equal to  Jiq2.08(t, ) = ?1123456(157(])%@4 Adg® A dg°.

n(t + dt,q) = Fy, sin(t, Fy —seq) at instance + ot, as D(x)
it changes according to the equation (12). Introducing the o
form derivative on a parameter as form which componeMereD(z) de4not§s th. setof adm|35|ble values.of the_phase
are derivatives of corresponding components on this pgpordlnateSJ , ¢, ¢" in the pointz of the configuration

rameter, we obtain the Vlasov equation in the form space.
O _ g PEEBD =m0l s 1) CONCLUSION
ot 5t—0 ot

Covariant form of the Vlasov equation (12) is presented.

As a simple example, consider an ensemble of noill kinds of distributions are described by differential
relativistic particles, which dynamics is described by thérms of various degrees. For all of them, distribution den-
equations (8), (9)y = 1, and the particles distribution sity is defined by the equality (4) and satisfies the covariant
is described by the form of 6 degree. Take spatial Carteguation (12). The equation (12) contains tensor objects
sian coordinates and corresponding components of velocity distribution density form and Lie dragging,being a
¢T3 =, i = 1,2, 3 as coordinates in phase space. parameter. Instead of timewe can take any parameter

According to (9), force components don’t depend on coifor the set of timelike surfaces filling some domain in the
responding components of velocity. Then in right hand sidgpace-time.
of (11) we should take only first term, and the Vlasov equa- Such approach can be applied also to the Liouville equa-
tion takes the form tion, which can be consider as the partial case when inter-

X action is neglected.
AP

Heren denotes corresponding component of the phase d Publ.Company of St.Petersburg State Univ., St.Petersburg
Sity n. 2010 (in Russ.).
Calculation of the self electromagnetic field can be car-
ried out by various ways. For example, for distribution (6j2 B-A- Dubrovin, A.T. Fomenko, S.P. Novikov "Modern Ge=
field can be calculated as superposition of the fields of mov- igngeztry — Methods and Applications. Part 1.” Springer, N,
ing charged particles. '
In general, self electromagnetic field can be found as a
solution for the Maxwell equations, which contain in non-
relativistic case the charge density and the current densit
forms and in relativistic case the current density form of 3
degree.
For distributions (7) description of the charge density
and the current density can require introducing function-
als analogous to functionals introduced for description of
the phase density. Nevertheless, for some cases, e.g. KV
distribution, we can do without new functionals.
Assume that current density form has smooth compo-
nents. Then we can construct mapping which transforms

05 Beam Dynamics and Electromagnetic Fields

~ 3

e . On

— (B B;v? - = 0.

m Fited D) g REFERENCES

e[rji] O.l. Drivotin, “Mathematical Basics of the Field Thedry

=1

D06 Code Developments and Simulation Techniques 2279



