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Abstract

In this paper we present the symmetry–design concept
based on symbolic computations for the corresponding
beam line propagator. The suggested approach can be real-
ized in both exact and approximate forms of the symmetry
terms.

INTRODUCTION

Last years there appear some papers devoted to group-
theoretical approach for the design of magnetic optical sys-
tems. It is known that many problems of similar systems
can be formulated in the terms of corresponding symmetry
conditions (see,i e. [1, 2, 3]. The modern trend in accel-
erator physics research requires advanced beam facilities
based on accurate elaboration of similar facilities projects.
Thus and so the main attention is paid to two the follow-
ing problems. The first of them is connected with selection
of optimal structures implementing desired goals and the
second — with engineering development. On this step the
designer rejects incorrect structures, for example, sensitive
to different kind of unwanted effects. In the present paper
we suggest an uniform approach based on symmetry theory
methods. On the first step this approach can be applied for
working out the desired beam line structure in detail. On
the second step this approach can be used for identification
of those structures, which “guarantee” (with a given degree
of accuracy for required restrictions) the desired proper-
ties. One can separate accelerator facilities on two groups.
The first family consists on sufficiently “small” systems,
supporting some particular problems: matching channels,
focusing systems, “invisible” insertions and so on. The
facilities of the second family can be presented as com-
plex systems. In this case one can present such type of
the system as a sequence of subsystems compatible with
each other. It is well known that there is a wide class of
symmetries, which support the process of control systems
for particle beam facilities. The first class of the symme-
tries (the class of intrinsic symmetries) are generated by
physical principles. As an example of similar symmetry
it should be denoted the symplectic property for Hamilto-
nian systems. This property brings about necessity of spe-
cial integration methods (numerical and/or analytical). The
second class of symmetries fulfills two following require-
ments: the constrained conditions can be formulated in the
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form of some symmetries and these conditions can be var-
ied according to a concrete problem without mathematical
tools changing.

In the present paper we attend exactly to the second type
of symmetries, because the first class of symmetries leads
only to limitations on parameters of corresponding integra-
tion methods (see, for example, [2]). The second class of
symmetries leads to some control parameters restrictions.
In particular, this can reduce to control parameters num-
ber. It is necessary also to mention that appropriate symme-
tries can remove some aberrations of higher order (see, i. e.
[1, 2, 4]). The suggested approach is based on the matrix
formalism [2], which allows to obtain necessary conditions
in a sufficiently simple form.

SYMMETRIES APPLIED TO THE BEAM
LINE DESIGN

The particle motion in a beam line can be written in the
form of a vector ordinary differential equation

dX

ds
= P

syst(s)X+ nonlinear terms.

As an example let us consider the well known problem
of “Russian quadruple” (or “rotation quadruple”) construc-
tion, which implements conversion a circular section (in
coordinate or impulse subspaces) to circular section corre-
spondingly. Using symmetry concept one can say about
conservation of rotating symmetry for a beam “portrait”.
This condition can be written (for example, in coordinates
subspace) in the following form

Tα ◦N0 = N0
M(st|s0)
=⇒ Tα ◦Nt = Nt, (1)

where N0 — an initial beam portrait in the configuration
space {x, y}, Nt — the corresponding image on the target
under the following map M(st|s0), generated by the sys-
tem under study, Tα — the rotation map in the transverse
configuration space under an arbitrary α around the optical
axis of the beam. Using (1) one can write the commutating
equality for Tα and M

Tα ◦M ◦ T −1
α = M. (2)

One can represent the turn transformation in the form
Tα = exp {α · Lturn} (here Lturn = =X∗

T
∗∂/∂X —

a generator for turn transformation in the plane {x, y},
X = (x, x′, y, y′)∗, and T is the matrix of the following
form

T =

(
O −E

E O

)
.
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Introducing the Lie operator of the forming system
Lsyst(st|s0), we can rewrite eq. (2):

exp
{
exp {αLturn} ◦ Lsyst(st|s0)

}
=

= expLsyst(st|s0).

The Lie operator Lsyst generated by some function

Gsyst(X) =
∞∑
k=1

G
syst
k (st|s0)X[k] can be written as

exp {αLturn} ◦ Lsyst = L̃syst,

L̃syst =

∞∑
k=1

(
X[k]

)∗ (
G̃

syst
k

)∗ ∂

∂X
,

where ⊕ is the Kronecker sum. Using the matrix equality
for matrices generating corresponding Lie operators (see
[2]) we can write

G
syst
k T

⊕k
α − TαG

syst
k

⊕k
= 0.

Let consider the linear case (for k = 1):

G
syst
1 Tα − TαG

syst
1 = 0.

In our case can be presented as the block matrix (G syst
1 =

G
syst(st|s0)):

G
syst
1 =

(
G

11
G

12

G
21

G
22

)
.

Using the presentation for T we obtain following equalities
for Gik:

G
11 = G

22, G
12 = −G

21. (3)

For the next calculations we should use the well known
Magnus presentation for the matrix of the beam transport
system under study G

syst(st|s0) (see [2]):

G
syst(st|s0) =

st∫
s0

P
syst(τ)dτ−

− 1

2

st∫
s0

τ∫
s0

{
P
syst(τ),P(τ ′)

}
dτ ′dτ+

+ nested commutators integrals. (4)

Here {A,B} is the matrix commutator. The matrixPsyst(s)
depends on the vector of control functionsU(s) (in the case
of a system consisting on quadrupole lenses only the vector
function U(s) degenerates in a scalar function u(s)). It is
not difficult to evaluate the following equalities for sub-
matrices Pik for P.

P
11(U(s), s) = P

22(U(st − s), st − s),

P
12(U(s), s) = −P

21(U(st − s), st − s).

We should note that these equalities are non-unique feasi-
ble solutions of the similar problem. For receiving of addi-
tional restrictions one can should use the structure of Mag-
nus representation (starting from the second term of the ex-
pansion (4) all terms consist commutators of corresponding
matrices only). In the case of the quadrupole symmetry the

matrices Pkk have the following form P
ii =

(
0 1

±k(s) 0

)
.

It is not difficult to show, that under integrals one can re-
ceive only two types of matrices:

f(k(t1), . . . , k(tm))

(
1 0
0 −1

)
,

g(k(t1), . . . , k(tm−1))

(
0 1

±k(tm) 0

)
.

Here ti, i ≥ 1 are integration variables for “inner inte-
grals”.

Using some matrix properties and the exponential pre-
sentation of Magnus one can evaluate an additional condi-
tion for R11:

U2R
11
U2 =

(
R

11
)∗

, (5)

which reduces to

{
R

11
}
11

=
{
R

11
}
22

. (6)

This condition results to a following condition

k(s) = −k(st − s). (7)

We should note that these conditions were received from
the natural restrictions on a beam form and algebraic and
functional constraints for the corresponding matrix func-
tions. The condition (6) defines so called load curves
(for the “Russian quadruplet”) and load surfaces (for 2n
quadrupole lenses, n ≥ 3).

COMPUTER EXPERIMENTS

The above written approach is the first step of optimal
parameters evaluation. This approach allows us to con-
straint several types of so called “load curves” (for four
quadrupoles) or “load surfaces” (for 2n quadrupole lenses,
n ≥ 3). As one can see on the fig. 1 the corresponding
curves have very complete forms and several branches. Be-
sides for different geometrical parameters the relative posi-
tions of these curves are modified. The optimization pro-
cedures (see, i.e. [6]) make it possible to find appropriate
solutions and investigate them for more relevant solutions.

In the case of six or more lenses we obtain surfaces of
the corresponding dimension. On the fig. 2 one can see an
example of similar surface We should note that the above
described approach accepts both symbolic and numerical
evaluations. The computer algebra packages (for exam-
ple, well known Mathematica, Maple os Maxima) give us a
very power tools for necessary investigation procedures. In
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Figure 1: Two types of optimal solutions for the “Russian
quadruplet”.

Figure 2: Load surfaces for six quadrupoles.

Figure 3: Load surfaces for six quadrupoles.

particular, a researcher can combine symbolic and numeri-
cal presentation for more convenient research organization.

The similar approach was applied for modeling of high
solid angle mass-separator [2] (see fig. 3). The correspond-
ing computational experiments lead us to a set of feasible
solutions.

Figure 4: Load surfaces for six quadrupoles.

The corresponding surfaces of admissible working
points are presented on fig. 4.

CONCLUSION

In this paper we show that a based on symmetry-based
approach realized in matrix formalism terms can provide a
powerful tool in the conceptual design of charged particle
optical devices. The corresponding tools can be extend for
beam line systems with different symmetries including lin-
ear and nonlinear abberations (for example for a fragment
mass analyzer [2, 4]). This approach allows us not only
reducing number of control parameters, but also simplify
corresponding optimization procedures [5]).
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