
HIGH PERFORMANCE WEB APPLICATIONS FOR PARTICLE
ACCELERATOR CONTROL SYSTEMS

G. Mazzitelli, C. Bisegni, P. Ciuffetti, G. Di Pirro, A. Stecchi - INFN/LNF, Frascati (RM), Italy;
S. Calabrò, L. Foggetta - LAL-CNRS, Orsay, France & INFN/LNF, Frascati (RM), Italy;

L. Catani, F. Zani - INFN-Roma Tor Vergata, Roma, Italy

Abstract
The integration of web technologies and applications

has been one of the major trends for the development of
new services for Control Systems (CS) of particle
accelerators and large experimental apparatuses.
Nowadays, high performance web technologies exhibit
some features that would allow their deeper integration in
a CS and their employment in developing CS’ core
components. In this paper we discuss the results of
preliminary investigations of a new paradigm for a
particle accelerators CS and the associated machine data
acquisition system based on a synergic combination of
network distributed cache memory and a non-relational
key/value database. Storage speed, network memory data
retrieve throughput and database queries execution, as
well as scalability and redundancy of the systems, are
presented and critically reviewed.

INTRODUCTION
The Italian Ministry for Education, University and

Research (MIUR) recently approved the construction of a
new international research centre for fundamental and
applied physics to be built in the campus of the University
of Rome “Tor Vergata”. It will consist of an innovative
high-luminosity particle collider named SuperB [1] and
experimental apparatuses, built by an international
collaboration of many important scientific institutions
under the supervision of Istituto Nazionale di Fisica
Nucleare (INFN) and the skills and support of the
neighbouring INFN Frascati Laboratory (LNF). Clearly, it
will offer great opportunities not only for new discovering
in particle and applied physics, but also for breakthrough
innovation in particle accelerators technologies.

The Frascati and Tor Vergata control groups have a
long experience in design, development and imple-
mentation of innovative CS. In the ’90s, the first PC and
LabVIEW®[2] based CS has been successfully developed
and operated for DAΦNE accelerator at LNF, breaking
through the common concept of controls [3]. This
experience and know-how is available today for a new
challenging project.

The idea is to design a new controls system based on
the present software trends, dominated by web
technologies and services, where large databases and the
most robust available data bus, ETHERNET, are used to
match very high throughput. The large community of
developers and users involved guarantees a good support
and may give hints on the longevity of the product.

The new CS, must be designed in such a way to
accommodate any kind of devices to reduce the hardware
dependence and the development time by exploiting the
availability of many devices with embedded
programmable CPU. Furthermore, the CS has to be able
to control and - where needed - to acquire data with
performance limited only by the hardware capability.

These requirements suggest inverting the typical CS
device-client data flow from polling (the client polls) to
pushing (the device push) information.

!CHAOS
The aim of the design (Fig. 1) for this new CS we

named !CHAOS (Control System based on Highly
Abstracted Operating Structure – but not a mess!) is to
provide a solution that naturally allows: redundancy of all
its parts, intrinsic scalability, minimization of points of
failure, hardware hot-integration and auto configuration.

To achieve such requirements !CHAOS, basically
developed in C++, employs distributed object caching for
real-time data access (Live Database) and a key-value
database for data archiving (History Database).

A Control Library (CL) completely manages data and
commands flow, the control processes and the devices
configuration. The device’s programmer is only asked to
develop the driver for the specific controlled hardware.

The CS component hosting the control software for a
device (or a family thereof) is called Control Unit (CU)
and is the only part that instances the !CHAOS
abstraction. The CL also provides, at the CU INIT phase,
the syntax and semantics for dataset and command to the
Metadata Server (MS) that allows the correct information
retrievement.

The CL takes also care of the data serialization, the
communication with databases, handling of system’s and
client’s commands and standard services of CS.

The data serialization strategy adopted for !CHAOS is
BSON, a binary-encoded JSON (JavaScript Object
Notation) [4] documents, optimized for fast storage
performance. The conversion from BSON and JSON is
fully supported.

Front-end
A fundamental requirement for the !CHAOS design is

the possibility to accommodate any kind of Acquisition
Hardware (AH) in such a way to be free as much as
possible from the hardware choice. AH can be grouped
into three classes:

WEPC142 Proceedings of IPAC2011, San Sebastián, Spain

2322C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

• CPU controlled devices: instruments connected to
a controller that performs data acquisition and
processing;

• Embedded devices: instruments providing an
embedded CPU and a set of API allowing the
control of their functionalities by software on
board; examples are digital oscilloscopes,
intelligent power supplies, and so on;

• Complex IO controllers or sub-systems: PLC
systems, distributed I/O buses (such as VME,
cPCI, xTCA and so on).

The high portability of the CL to the widest selection of
operating systems and CPU boards leads to a multi task
process that provides to handle input (commands) and
output (readouts) data, initialize and configure data flow
(type, execution frequency, etc).

Figure 1: !CHAOS Control System operating structure and data flow: low level hardware and controller (front end),
database (middle layer), high level (user interface).

The Metadata Server (MS) collects configurations,
syntax and data semantics. Its main function is to
maintain the knowledge of all components and devices
under control of the CS and their operating condition. MS
acts also as supervisor of commands flowing between CL
and User Interface (UI).

Each front-end sets and gets its own device
configurations in the MS. It also auto-configures all data
semantics and syntax needed to client applications for
data retrieving and to optimize access, load, etc.

Middle Layer - Databases
Data acquired by the CU, formatted according their

dataset and then serialized, are both updated in the data
object caching and stored into the key-value DBs with
independent and user adjustable push rates.

The data object caching is optimized to cache data in
real time, typically for displaying on the User Interface,
while the key-value DB is optimized to store large
amount of data with high throughput.

The possibility to set their push rates independently can
be used for optimizing performance and load on the two
services.

Two open-source software are currently under tests as
candidates for the live-data (memcached [5], a data object
caching) and the history-data (mongoDB [6], a key-value
DB). Both of them allow for scalability and redundancy.

User Interface
Symmetric to the CL, at the higher level in the

!CHAOS structure, is the User Interface Toolkit. This
library provides the client applications (display panels,
measurement applications, etc.) with the interface to the
CS framework for retrieving configuration information
from MS, access live data (from cache db) and archived
data (from history db), send commands to devices, etc.

By using the datasets information stored into MS, the
UI Toolkit will be able to auto-generate Graphical User
Interfaces for controls and data presentation.

Proceedings of IPAC2011, San Sebastián, Spain WEPC142

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2323 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

Triggered DAQ Mode and Timing
One of the features we expect by the !CHAOS

framework, or rather by the CL, is the possibility to easily
trigger the hardware and synchronize operations among
distributed components. The integration of the
trigger/timing system in the CS will give the CL the
possibility to handle synchronously hardware trigger
dispatched to the instruments distributed around the
accelerator:

• a PRE TRIGGER command configures the devices
for a specific task to be executed when the
hardware trigger will be detected. The pre-trigger
also configures a timing controller to broadcast
the hardware trigger to the interested devices;

• any PRE TRIGGER is flagged with a specific tag,
required to retrieve coherently data in the
databases;

• TRIGGER command is sent to timing controller
which latches the time stamp and sends hardware
trigger to AH;

• data from AH and timing controller are updated
with their own duty cycle in the live/history
databases.

Figure 2: Timing trigger flow.

In such a way it will be possible to synchronize data
coming from many different acquisition hardware, being
limited only by the latency of the different devices.

This item is strictly correlated to the choice on the
accelerator timing system, under study for the SuperB
accelerator. A custom controller, white rabbit system, etc.
are under study to understand the best choice.

PRELIMINARY RESULTS
The CS, presently driving the DAΦNE accelerator has

been used for testing one of the core components of
!CHAOS: the live-data caching. At DAΦNE the front-end
controllers acquire the data from the devices and
continuously update - through fiber optics - a central
common VME address space, which is also accessible
from the user’s applications.

For our tests, the routines used to update the devices’
set values have been easily modified in order to write into

a memcached server, running on a Linux box with 100
Mbps Ethernet network interface, instead of the VME
address space. The class of devices migrated is the ICE
(Ion Cleaning Electrodes), which is represented by a data
structure of 64 bytes. During the test, the dataset has been
fetched with a frequency ~ 100 Hz. The result shows no
dependency on the number of fetching consoles (up to 7
in the test) and the memcached server CPU load never
exceeded 0.7 % and a memory usage ~ 0.1%.

An analogous test has been performed at SPARC by
caching a 640x480@8 bit (300 kByte) image from a
digital camera of the optical beam diagnostic. The image
was transferred from the digital camera with no
dependency on the consoles number (up to 4 in the test)
accessing the image (Gbit network).

A first release of the CL has been developed on Linux
and OS X Operating Systems and it is also under
integration with the LabVIEW environment.

CONCLUSION
SuperB is pushing us to study and implement new ideas

in controls, to be up to date in integrating commercial
web technologies and to overcome the primary issue
coming from previous architectures: the limits due to the
usage of specific hardware and software.

The plans are to develop the core software of the CL
and to explore its critical issues - if any - by the end of
2011. In the mean time some preliminary test started on
the DAΦNE and SPARC accelerators, where is available
a natural gym to understand any possible problem and
rapidly solve it in a real operative contest.

The preliminary tests undergoing on DAΦNE
accelerator, in real environment and on real elements to
be controlled, have confirmed that the performance of a
no-relational database resident on RAM is practically
limited only by Ethernet bandwith. The systems load is
very low, while redundancy and scalability allows being
confident on the behaviour for a larger accelerator
complex such as the SuperB.

ACKNOWLEDGMENTS
We would like to thank the Padova group of M. Bellato

et al, M. Serio and A. Drago who are starting to
collaborate on the timing issues related to the SuperB
controls and accelerator synchronization, as well as the
LNF computing centre for the support provided in system
administration issues and networks analysis and
implementation. M. Biagini and P. Raimondi for the
encouraging start up support.

REFERENCES
[1] SuperB-CDR2 INFN-LNF-11/9(P) 15 Jun 2011
[2] http://www.ni.com/labview/
[3] G. Di Pirro eta al, NIM A 352, 455-457 (1994)
[4] http://bsonspec.org/; http://www.json.org/
[5] http://memcached.org/
[6] http://www.mongodb.org/

WEPC142 Proceedings of IPAC2011, San Sebastián, Spain

2324C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

