WEPC159

Proceedings of IPAC2011, San Sebastian, Spain

A PYTHON TRACKING CODE AND GUI FOR CONTROL ROOM
OPERATIONS

M. T. Heron”, J. Rowland, Diamond Light Source Ltd, Oxfordshire, U.K.

Abstract

Considerable use has been made in recent years of
accelerator physics modelling and on-line tools under
MATLAB. This work has demonstrated the benefits of
operating in arich integrated environment and given good
portability across projects and operating systems. As a
possible alternative to MATLAB, Diamond has been
evaluating options based on Python. Python together with
the Numpy libraries and Qt Graphics provides an
environment which offers a lot of the functionality of
MATLAB. This paper presents these developments,
which include a tracking code, a symplectic integrator,
and code to calculate the Twiss functions and response
matrix, together with a GUI interface.

INTRODUCTION

Diamond, a third generation 3GeV synchrotron light
source, commenced operation in January 2007 [1]. The
storage ring is based on a 24-cell double bend achromatic
lattice of 561m circumference. The photon output is
optimised for high brightness from undulators and high
flux from multi-pole wigglers. The current operational
state includes twenty photon beamlines, with a further
twelve beamlinesin design or construction.

From initial commissioning, Diamond has used the
accelerator physics application MATLAB Middle Layer
(MML) [2] as part of on-line physics studies. Whilst
MML has been used very successfully at Diamond and at
a number of other light source projects, it requires
MATLAB to operate. This brings with it the need for a
MATLAB licence for each MATLAB environment, or
the overhead of building and deploying MATLAB
compiled applications. Historically, up to and including
version R14, we aso experienced poor stability of
MATLAB on aLinux platform.

Thiswork explores the practicalities of realising similar
functionality to MML in an open source, cross platform
environment based on the scripting language Python [3].

PYTHON ASANALTERNATIVETO
MATLAB

Developing scientific applications in Python has been
aided by work on a number of support packages. These
components, when brought together, provide a rich
development environment. They are:

e Numpy [4]: A fast, compact, multi-dimensional array
toolbox. Whilst Python has heterogeneous Lists of
objects, Numpy extends these to homogeneous
Arrays and Matrices which support element-wise and

mark.heron@diamond.ac.uk

2358

linear algebra mathematical operations.

e Matplotlib [5]: A plotting library for Python and
Numpy which provides an object-oriented AP
allowing plots to be embedded into applications, and
also provides a procedural interface based on a state
machine designed to resemble closely that of
MATLAB plotting.

e PyQt [6]: A Python binding for the Qt cross platform
GUI environment.

Within Diamond, Python together with one or more of
the above components has been used for the devel opment
of a number of self-contained control system applications
[7]. These components were also used in the devel opment
of the particle tracking code Serpentine [8] and as the
basis of Spyder [9], a Python development environment
providing MATLAB-like features.

REQUIREMENTS

The requirements for the application are:

e MML-like functionality: Built-in physics
applications, scripting, and a command line interface
to work with data interactively.

e Object-orientated design: Application design should
be object-orientated, but should retain the ability to
operate with data and to have common objects and
data between in-built applications, scripts and the
command line interface.

e Control System interface: A control system interface
that abstracts on-line data from the underlying
control system, and is independent of any specific
control system toolkit.

¢ On-line model: Connection to an on-line model.

e Ease of deployment: Minima dependencies and
support for cross-platform deployment (Linux and
Windows).

e Based on Python: Utilising Python and the related
components identified above.

¢ Built-in plotting: Support for common visualization
of the data, together with flexibility in user-generated
plots.

e Ease of physics application development: provided
by the use of clean interfaces between components.

THE MAPPAPPLICATION

The application, called MAPP, consists of a user
interface, together with interfaces to multiple data sources
including the control system and amodel server.

The user interface data flow, Fig. 1, is based on two
objects, the Name Object and Get Put Object. The former
defines the information for each family of devices
including the number of members, conversions to and

06 Beam Instrumentation and Feedback

TO04 Accelerator/Storage Ring Control Systems

Proceedings of IPAC2011, San Sebastian, Spain

from engineering units, units, spatial information, and
mapping to control system parameters, e.g. Quad family.
For each family this object is an extension of a Base
Name Object class. The Get Put Object defines the
methods to get data from and put data to the model server,
the control system and files, or to get data randomised and
normalised to unity or as zeros. For the Get Put Object a
default data source and destination are defined — the
machine, the model server, files etc — to or from which
Get and Put methods are directed. Alternatively, the
source or destination can be specified by calling a source-
or destination-specific method, e.g. GetModel. All calls
are subject to specified conversion to or from engineering
or physics units.

Built in

Console
App's

Scripls

GetPut Objoct

EngToPhysics/ PhysicsToEng

Machine Filc
5 Save/
Load

Model

Scrver (EDLE

Zeros
Interface

Figure 1. Dataflow.

The user interface, Fig 2, is a Qt 4 application
providing pre-defined plotting of data against longitudinal
position, a group of labels and text boxes for displaying
parameters, a group of buttons for invoking in-built
applications, two sets of radio buttons for selecting data
source and destination, and a command window with a
Python interpreter. The plotting was originally realised in
Matplotlib, but this proved too slow for real-time updates
due to anti-aliased software rendering into a buffer
followed by image transfer (blitting), and was re-
implemented using the Python QWT [10] module which
gives acceptable real-time performance.

The control system interface is redlised using the
Cothread [7] interface to EPICS Channel Access. The
interface to the model server provides methods to get and
put parameters to or from the model server by family
name, cell and instance. For performance reasons it also
provides the option to get and put all values for a family
in one operation.

Initialisation creates Name Objects, e.g. HBPMNo for
all specified families of devices, and then creates Get Put
Objects, e.g. HBPMGetPut from each Name Object, and
Numpy Arrays e.g. HBPM, for the data values from each
Get Put Object. All actions are then event-driven, based
on running a script, on running an in-built application or
on commands entered in the command window, and act
through these objects and data. A plot object is created
inheriting configuration from Get Put Object and thereby
defining the plot data size, the range, the units, etc. for
plotting methods which operate on Arrays of data. The
command window includes a Python interpreter, running
in the Qt thread, which provides access to the global

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

WEPC159

variable space of the application and provides code
completion, including the application-specific objects.

Figure 2: User Interface.

Example Applications

An example function to get the current horizontal and
vertical beam positions from the default source and plot
them is shown in Fig. 3. The explicit copy of the Array of
BPM values to the global Arrays of BPM values makes
the latest values available to any in-built application, the
command window or a script.

def pl ot BPM):

HBPM = GHBPMCet Put . get ()

VBPM = GVBPMzet Put . get ()

p = Plotting(GHBPMzet Put , None,
GvBPMzet Put, None)

p. pl ot HandV(HBPM None, VBPM None)

GHBPM :] = HBPM

GvBPM :] = VBPM

Figure 3: Script to plot horizontal and vertical BPMs.

TRACKING CODE

The Python tracking code in the model server is similar
tothe MATLAB and C tracking code AT [11] in MML. It
was originally developed as an educational and
prototyping tool and so supports a variety of integrators
and magnet models in Python and optionally in C++:

e An exact Hamiltonian for rectangular magnets in

small machines

o Explicit and implicit 4™ order symplectic integrators

for separable or non-separable Hamiltonians

o 2" order symplectic dipole fringe fields

¢ A Newton method closed orbit solver

o Automatic differentiation for Taylor map extraction

The code has been tested against AT, Tracy-3 [12] and
MADX-PTC [13] and gives identical results to within
numerical precision, provided that corresponding co-
ordinate systems, magnet body Hamiltonian and fringe
field models are chosen.

The Python tracking code contains symbolic matrices
for the 4-D linear case and symplectic integration for all
6-D elements. Transport matrices are recovered by the
finite difference method (as used in AT) or by automatic

2359

WEPC159

differentiation (used in MADX-PTC and Tracy-3). In the
case of automatic differentiation the recovered matrices
are identical to the analytic solutions, to within numerical
precision. The subset used in the model server is pure
Python and Numpy, and uses the 4-D matrix solutions of
the expanded paraxial Hamiltonian (see Eq. 1) [14]
(transverse co-ordinates in scaled momentum,
longitudina co-ordinates in relative momentum
deviation), and the linear part of the SLAC-75 [15] dipole
fringe field, taking into account field integral and pole
gap. This is adequate for linear optics in an easy-to-
understand code as a proof of concept. If required, non-
linear elements and solvers are available as drop-in
replacements.

_ ety x8 | x?
T 2(148) p + 2p? tV @

The uncoupled Twiss functions are calculated from the
one-turn matrix and propagated through each element,
and the analytic orbit response matrix is then calculated
from the Twiss functions.

Lattice Description

The lattice is read in Tracy-3 format by a recursive
descent parser, with the Tracy-3 lattice file generated
from an AT deck, which is the master lattice format at
Diamond. The AT deck is not read directly, asit is stored
in the MATLAB language and so would require a
complete MATLAB parser. The simplified domain-
specific lattice languages, such as MAD (of which Tracy-
3isavariant), are therefore more suitable for interchange.

Model Server

The model server is a Python XMLRPC [16] server
running as a web service on port 8080. XMLRPC
provides a simple transport mechanism as it supports the
common cross-language types of integer, string, floating
point, heterogeneous list (called array) and dictionary
(structure) and provides clients and servers in many
languages. Whilst the serialization of messages can be up
to 20 times larger than their native storage, this is not a
significant limitation, and for large data sets this can be
improved by using the base 64 to encode large arrays as
binary blobs, making the overhead only 30%. An
application of this would be to support the return of turn-
by-turn tracking data from all BPMs.

On start-up the model server reads a lattice file from
disk and calculates positions, initial Twiss functions and
the response matrix. It then accepts magnet set-point
changes and returns closed orbits, as measured by the
BPMs, Twiss functions at all lattice points, and tunes.
Subsequent changes are processed using a command to
run the simulator.

STATUS

To date the application, model server and interface to
the Diamond control system are working. The built-in

2360

Proceedings of IPAC2011, San Sebastian, Spain

applications support plotting of data for the families and
some elementary physics functionality, orbit correction,
and beta function measurement. The command line
interface and scripting is working, but the management of
global name space needs improving, and all the
configuration of interface parameters is hard-coded for
the Diamond storage ring. At present al the application
components run in the Qt application thread, so any errant
script or command can lock the application up. The Qt
user interface needs developing to include resizing, menu
functions, etc.

CONCLUSION

The work to date has validated the initial assumptions
that Python together with the support packages make a
rich environment suitable for developing accelerator
physics tools. However, Diamond’'s needs have meant
that this work has had low priority and so the application
as yet is no more than a proof of principle. Considerable
work would be required to develop a usable tool.

Furthermore the value of this environment needs to be
considered, in the context of the acceptability of a
Python-based application in comparison to a MATLAB-
based one for the intended users, operations staff and
accelerator physicists.

REFERENCES

[1] R.P. Walker, “Commissioning and Status of the
Diamond Storage Ring”, APAC 2007, Indore, India

[2] G. Portmann, et al, “An Accelerator Control Middle
Layer Using MATLAB", PAC 2005, Knoxville,
Tennessee

[3] http://mww.python.org/

[4] http://numpy.scipy.org/

[5] http://matplotlib.sourceforge.net/

[6] http://www.riverbankcomputing.co.uk/software/pyqt/
intro

[7] M. G. Abbott, et al, “Diverse uses of Python at
Diamond”, PCAPAC 2008, Ljubljana, Slovenia

[8] S. Molloy, S. Boogert, “ Serpentine : A New Code
For Particle Tracking”, IPAC 2011, Kyoto, Japan

[9] http://code.google.com/p/spyderlib/

[10] http://pyqwt.sourceforge.net/

[11] A. Terebilo, “Accelerator Modelling with MATLAB
Accelerator Toolbox”, PAC 2001, Chicago, Illinois

[12] J. Bengtsson, Tracy-3, Private communication

[13] http://mad.web.cern.ch/mad/

[14]J. Bengtsson, “TRACY -2 User’'s Manua”, SLS
Internal Document, February 1997

[15] K. L. Brown, “A First and Second Order Matrix
Theory for the Design of Beam Transport Systems
and Charged Particle Spectrometers’, SLAC 75,
1982

[16] http://Amww.xmlrpc.com/

06 Beam Instrumentation and Feedback

TO04 Accelerator/Storage Ring Control Systems

