RF Modeling Plans for the European Spallation Source

EUROPEAN SPALLATION SOURCE

Robert Ainsworth[^], Mats Lindroos^{*}, Stephen Molloy^{*}, Steve Peggs^{*}, Roger Ruber[#], Rihua Zeng^{*} ^{*}ESS AB, Lund, Sweden [#]Uppsala University, Uppsala, Sweden [^]Royal Holloway, University of London

IPAC, San Sebastien, Sept. 2011

European Spallation Source

- World's most powerful pulsed neutron source
 - 5 MW, 2.5 GeV protons
 - 50 mA
 - 14 Hz, 4% duty cycle
 - \rightarrow 2.86 ms pulses

- Single-pass linac with no accumulator ring
- Source:
 - Electron Cyclotron Resonance (ECR) source
 - 75 keV output

Schedule

EUROPEAN SPALLATION SOURCE

Accelerator Design Update

(30 years ago)

EUROPEAN SPALLATION

Steve Peggs

Cristina Oyon

Work Package (work areas)

Josu Eguia

Management Coordination – ESS (Mats Lindroos)
Accelerator Science – ESS (Steve Peggs)
Infrastructure Services – Tekniker, Bilbao (Josu Eguia)
SCRF Spoke cavities – IPN, Orsay (Sebastien Bousson)
SCRF Elliptical cavities – CEA, Saclay (Guillaume Devanz)
Front End and NC linac – INFN, Catania (Santo Gammino)

Guillaume Devanz

7. Beam transport, NC magnets and Power Supplies – Århus University (Søren Pape-Møller)

8. RF Systems – Uppsala university (Roger Ruber)

Roger Ruber UPPSALA UNIVERSITET

Sebastien Bousson

5/19

Work Package 8: RF Systems

EUROPEAN SPALLATION SOURCE

Open Questions for RF Modeling

Beam loss

- Max beam loss = 1 W/m
 - Based on cryo-load, and radioactivation of beamline
- Beam dynamics
 - Influence of HOMs
 - Halo (longitudinal & transverse)

Field emission / Multipacting (FE/MP)

- Q reduction
- Cryoload
- HOM coupler detuning

LLRF stability

- Pulse modulator droop & ripple
- RF power regulation

EUROPEAN SPALLATION SOURCE **R/Q** spectrum for a proposed elliptical **ESS SC cavity**

Installation of HOM couplers?

- A primary question for the RF group
- Well known risks of <u>not</u> installing
 - Beam breakup, emittance degradation, cryoload, ...

Installation also comes with risks

- S. Kim, "SNS Superconducting linac operation experience and upgrade path", LINAC08.
- Electron loading in the coupler
 - Field emission (FE), multipacting (MP)
- Several SNS cavities still out of operation
- Couplers proposed for ESS should be investigated

Proposed coupler designs: LC loops to filter accelerating mode

Re-scaled from TESLA design (R. Calaga)

Design from Rostock University (WEPC099)

Each design has been optimised for RF properties, however investigations of FE/MP behaviour is also necessary.

Multipactor in the Rostock design

Build cavity +coupler volume, and mesh

EUROPEAN SPALLATION SOURCE

Find eigenmodes (using Omega3P) Track electrons emitted from coupler surface (using Track3P

Find resonant impacts & scale by SEY

Multi-cavity Field Emission

Instantaneous phase difference = 0

Instantaneous phase difference = 180°

FUROPEAN FE current is dependent on cavity phase relationship

LLRF

1% Modulator droop/ripple induces ~10° phase & 1% amplitude klystron error

PI feedback necessary

Gain limited by loop delay & closest passband mode

Summary & Conclusions

Open questions for RF modeling:

- Beam loss
- FE/MP
- LLRF
- MP in HOM coupler
 - Designs may be tested in simulation
 - Provide feedback to coupler designers
 - How accurate is the code?
 - Can MP bands be processed away?
- FE within a cryomodule
 - Simulations allow an understanding of FE trajectories
 - Observed dependence on cavity parameters
- LLRF
 - Stability requirements
 - Ongoing work...

SPARE SLIDES

Coupler Regions

SEY used in postprocessing the Track3P results

23/19